Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://ea.donntu.edu.ua/jspui/handle/123456789/29226
Назва: Parallel time step control of lines method for the evolution equations
Автори: Dmytriyeva, Olga
Huskova, Nadiia
Ключові слова: evolution equations
method of lines
Cauchy problem
parallel step control
block methods
τ-refinement
Дата публікації: 2018
Короткий огляд (реферат): The problems of obtaining solutions for partial differential equations with the help of the method of lines are considered, which is a semi-discrete method with discretization over spatial variables. Such an approach made it possible to effectively implement a large class of evolutionary equations. The problems of solving the received SODEs by collocation block methods are considered, allowing to provide an effective parallel implementation. Moreover, all the advantages of the solution (parallel step control, local error control, stability of the solution) are realized for the case of partial derivatives without significant increase in computational complexity.
URI (Уніфікований ідентифікатор ресурсу): http://ea.donntu.edu.ua/jspui/handle/123456789/29226
Розташовується у зібраннях:Наукові публікації кафедри прикладної математики та інформатики

Файли цього матеріалу:
Файл Опис РозмірФормат 
Dmytriyeva_Huskova_CAIT_2018.pdfThe problems of obtaining solutions for partial differential equations with the help of the method of lines are considered, which is a semi-discrete method with discretization over spatial variables. Such an approach made it possible to effectively implement a large class of evolutionary equations. The problems of solving the received SODEs by collocation block methods are considered, allowing to provide an effective parallel implementation. Moreover, all the advantages of the solution (parallel step control, local error control, stability of the solution) are realized for the case of partial derivatives without significant increase in computational complexity.519,83 kBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.