БАЧУРИНА Я. П., аспірант; БАЧУРИН Л. Л., к.т.н. (ДонНТУ)

МОДЕЛИРОВАНИЕ ВЛИЯНИЯ ЖЕСТКОСТИ ЛИТОЙ ПОЛОСЫ НА ВЕЛИЧИНУ КОНВЕРГЕНЦИИ ПОРОД В ОХРАНЯЕМОЙ ВЫРАБОТКЕ

Викладено результати моделювання впливу жорсткості литої смуги на величину зміщень покрівлі та підошви виробки.

При обосновании способа охраны выработки позади очистного забоя и параметров охранных сооружений приходится учитывать тот факт, что достижение положительного эффекта по одному из параметров охраны часто сопряжено с ухудшением эффекта по другому параметру, а то и по нескольким. Например, для обеспечения максимальной несущей способности охранного сооружения, необходимо использовать жесткие конструкции, среди которых довольно распространены литые полосы.

Поскольку литая полоса относится к категории жестких охранных сооружений, её применение приводит к возникновению так называемого «эффекта штампа», когда давление пород кровли, приходящееся на литую полосу, приводит к стимулированию выдавливания пород почвы в выработке. Интенсивность этого эффекта в общем случае зависит, при прочих равных условиях, от жесткости литой полосы, её геометрических размеров (ширины, соотношения ширины и высоты), расстояния от выработки, расстояния от почвы пласта до почвы выработки (величины нижней подрывки пород) и пр.

В рамках данной работы рассмотрим зависимость величины деформаций породного контура выработки от жесткости литой полосы при её постоянных размерах.

Рассматривается одиночная горная выработка, обслуживающая выемочный участок и охраняемая литой полосой в выработанном пространстве после прохода очистного забоя (для выдачи отработанного воздуха и/или для повторного использования) (рис. 1). С противоположной стороны выработки пласт остается нетронутым.

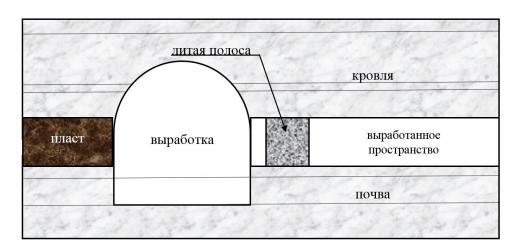


Рисунок 1 – Схема охраны выработки литой полосой

Допущения. Задача решается в упругой постановке (что является грубым приближением к реальным условиям, которым соответствует в большей степени упругопластическая постановка, но на данном этапе можно этим пренебречь), методом конечных элементов [1-4]. Слоистость массива не учитываем, рассматривая кровлю, почву и угольный пласт как однородные слои с усредненными свойствами.

В целях упрощения принимаем расчетную область в виде прямоугольника,

построенного относительно оси выработки со стороны литой полосы с шириной 12,62 м (+5 полупролётов от выработки). Левое полупространство в силу практически полной симметрии исключается. Все виды нагрузки, действующие на исследуемую область и формирующие в ней определенное напряженно-деформированное состояние, приводятся к статически эквивалентным силам, приложенным в узлах.

В силу симметрии **граничные условия** по перемещениям следующие: горизонтальные компоненты вдоль вертикальной (x=0) и вертикальные вдоль горизонтальной (y=0) сторон прямоугольника равны нулю. Неизвестны перемещения точек внутри массива, на контуре выработки и на границе области; нагрузка от веса вышележащих горных пород задается в виде распределенных напряжений на границах области: $p_y = \gamma H$, $p_x = 0.3\gamma H$.

Расчетная схема приведена на рисунке 2.

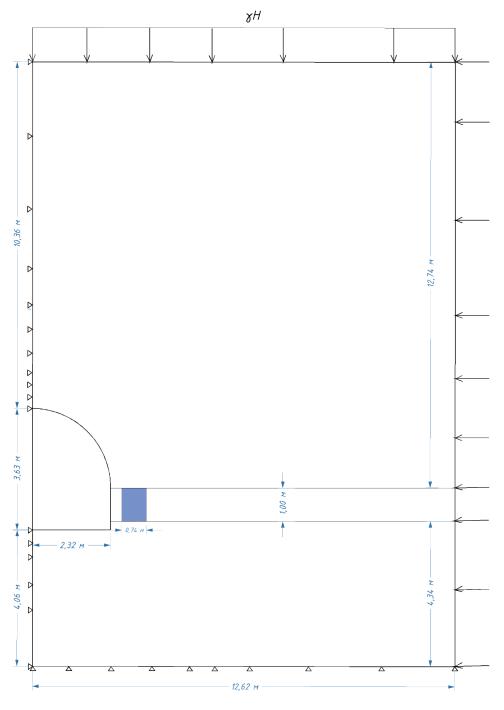


Рисунок 2 – Расчетная схема

Характеристики пород и литой полосы приведены в таблице 1.

Таблица 1 – Физико-механические свойства пород и литой полосы

	Модуль	Коэфф.	Объёмная
	упругости Е,	Пуассона v	$Macca γ, T/M^3$
	ГПа		
Кровля – песчаник	5,5	0,16	2,5
Почва - алевролит	1,2	0,24	2,6
Выработанное пространство (разрушенные	2,0	0,45	2,0
породы)			
Литая полоса	12,4	0,25	2,02,21

В расчете принята глубина H = 800 м. Мощность кровли -10,36 м, почвы -4,06 м, угольного пласта -1,0 м.

Рассматривается выработка арочной формы сечения, пройденная по пласту угля с подрывкой почвы на 0,25 м. Величина полупролёта выработки 2,32 м, высота — 3,63 м.

Литая полоса возводится в 0,33 м от края выработки, ширина литой полосы 0,74 м. Прочность литой полосы при моделировании будет варьироваться согласно указанным в таблице диапазонам изменения модуля упругости и объёмной массы с шагом в 1/7 диапазона, т.е. по модулю упругости через 0,2 ГПа, по объёмной массе – через 0,03 т/м³.

Крепь в модели не учитывается, в том числе крепь выработки, опалубка литой полосы и органная крепь.

Для конечно-элементной дискретизации использованы треугольные элементы с линейной аппроксимацией перемещений. Расчетная область разбивалась на 398 элементов. Нумерация элементов и узлов — произвольная.

В расчетах учитывался собственный вес пород. Далее показаны результаты расчета для литой полосы с $E=1\Gamma\Pi a$ и $\gamma=2,0$ т/м³.

Полученные при расчете поэлементные значения напряжений и деформаций для сглаживания распределены по узлам, принадлежащим этим элементам. Результаты представлены в виде графика смещений кровли (рис. 3).

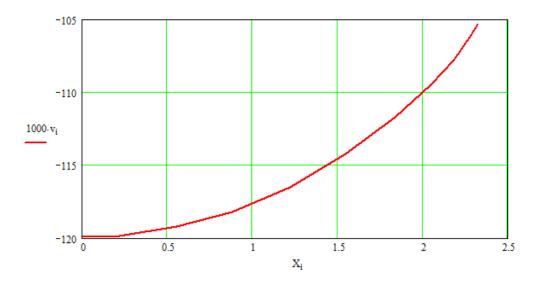


Рисунок 3 – График смещения кровли выработки, мм (0 совпадает с осью выработки)

Для установления зависимости смещений от жесткости полосы повторим расчет с различными значениями модуля упругости и плотности литой полосы. Максимальные смещения кровли и почвы заносим в таблицу 2.

Таблица 2 – Результаты моделирования смещений кровли и почвы

таозища 2	полица 2 — гезультаты моделирования емещений кровли и по в		
Е, ГПа	γ , T/M^3	Макс. смещение	Макс. смещение
		кровли, мм	почвы, мм
1,0	2,0	120	30
1,2	2,04	118,7	31,45
1,4	2,08	117,8	32,68
1,6	2,12	116,9	33,73
1,8	2,16	116,2	34,65
2,0	2,20	115,6	35,45
2,2	2,24	115	36,16

Сведения из таблицы 2 представлены в графическом виде на рис. 4.

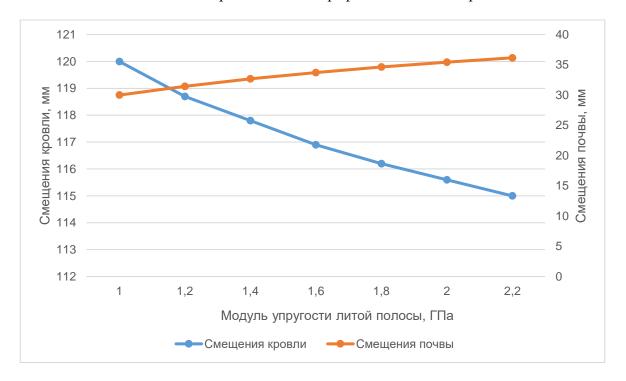


Рисунок 4 — Зависимость смещений пород кровли и почвы выработки от жесткости литой полосы

Представленные на рис. 4 зависимости иллюстрируют наблюдаемый на практике «эффект штампа» – при увеличении жесткости литой полосы, при прочих равных условиях, увеличивается выдавливание почвы, - и, в то же время, уменьшаются смещения кровли, так как более жесткая полоса в лучшей степени противостоит оседанию пород кровли.

Построенная в данной работе конечно-элементная модель горной выработки, охраняемой литой полосой с различными характеристиками, уже позволяет анализировать влияние свойств литой полосы на величину деформаций, напряжений и смещений в породном массиве, но, в то же время, не лишена ряда недостатков.

Необходимо учитывать особенности деформационных процессов в различных зонах поддержания выработки (натурные данные для аналогичных рассмотренным в задаче условий приведены, например, в [5]).

Реализована задача в упругой постановке, которая в отношении горных пород является довольно грубым приближением; реализация же упругопластического механизма, в том числе с разрушением материала, позволит максимально приблизить модельные показатели к реальным. Также необходимо рассмотреть изменение величины и характера

конвергенции пород при изменении геометрических параметров охранного сооружения, в том числе — относительно размеров выработки и мощности пласта, что будет предметом дальнейших исследований.

Литература

- 1. Зинкевич О. Метод конечных элементов в технике. Москва: Мир, 1975. 543 с.
- 2. Норри Д., де Фриз Ж. Введение в метод конечных элементов. Москва: Мир, 1981. 304 с.
- 3. Бачурин Л.Л. Решение плоской задачи механики деформируемого твердого тела методом конечных элементов в пакете Mathcad // Exponenta Pro/Методы, алгоритмы, программы. 2003. № 3. С. 28–33.
- 4. Фадеев А.Б. Метод конечных элементов в геомеханике. Москва: Недра, 1987. 221 с.
- 5. Закономерности пучения почвы в подготовительных выработках / А.Т. Курносов, С.А. Курносов, И.Н. Слащев, В.В. Задерий, Г.И. Горбачев // Геотехническая механика: Межвед. сб. науч. тр. Днепропетровск: ИГТМ НАНУ, 2012. Вип. 101. С. 105-112.