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Use of interacting neural networks in cryptography

The computing power of computer technology, as well as the amount of data transmitted, is
growing steadily every day. In this regard, existing encryption algorithms quickly become
obsolete, due to insufficient cryptographic strength or bandwidth. There is a need to constantly
create new encryption methods or modify old ones. As new algorithms can be algorithms using
neural networks. This article presents the existing algorithms created on the basis of mutual
synchronization of neural networks. The basic principles of their construction and application are
described, as well as areas that require further research and modernization are identified.
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Introduction

Cryptography is a science that ensures the
secrecy of data transmission with the support of
confidentiality,  data  integrity = and  user
authentication identification. Cryptography is based
on encryption mechanisms that allow you to
convert an open message to a closed (encrypted)
one. There are two basic approaches to encryption -
symmetric methods with a secret key and
asymmetric methods with an open prickly [1].

Public key cryptography consists of creating
two keys (public and private), as well as a reliable
encryption method that allows you to encrypt a
message with a private key in such a way that you
can subsequently decrypt it only using the public
key, and vice versa. With this approach, the public
and private keys must be generated in such a way
that the calculation of the private key in the
presence of the public key is impossible in a
reasonable amount of time. The private key should
not be transferred by its owner, only the public key
is transferred. In this case, the key can be
transmitted over an open channel, or the key can be
made publicly available [2].

Systems built on this approach have a very
high level of security, but at the same time,
calculations in them require a large amount of
computing resources, which greatly complicates
application of this approach for large data flows.

Secret key cryptography is based on the
existence of one single key for encrypting and
decrypting messages, which is secretly transmitted
between wusers over a secure communication
channel. Compared with public key encryption, this
approach is less resource-intensive, however, the
main problem of the approach lies in the secure
exchange of a shared key between users. To ensure
the secure transfer of the secret key, special
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protocols are used, for example, the Diffie-Hellman
protocol, which is based on the assumed complexity
of the problem of solving the discrete logarithm.
This protocol allows two users to obtain a common
private key via a communication channel that is not
protected from listening, but is protected from
spoofing [3-5]. If it is possible to modify data, it
becomes possible for an attacker to intervene in the
key generation process. In addition to the classical
algorithms created for key exchange, other
approaches can be used, such as:
neurocryptography, chaotic synchronization, and
the exchange of quantum keys [5]. In this work, a
key exchange option using neural networks is
proposed, namely, their mutual synchronization.

Interacting neural networks

An artificial neural network is a model built
on the principle of functioning of nerve cell
networks of biological organisms. The first attempt
to create an artificial neural network was in [6]
when trying to simulate the processes occurring in
the brain. Artificial neural networks are systems of
integrated and  communicating  processors
(neurons). A neural network usually consists of a
multilevel connected structure of neurons, in which
the first layer consists of input neurons, to which
the initial data are supplied, and then data is
transmitted through the synapses to the subsequent
layers to the flesh of the last level of output neurons
in which the result is finally formed. In synapses,
parameters called “weights” are stored, which
affect the data when calculating the resulting
function [7]. Typically, neural networks have three
types of parameters:

—scheme of communication between layers
of neurons;

—the training process (updating weights);

—activation function.
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Neural networks can be multi-level, and also
have feedback between neurons [7]. However, an
increase in the number of processors and levels in
the neural network, as well as the addition of
feedback, increases the amount of computation,
which greatly complicates the work with a large
data stream.

Neural networks need training to solve the
necessary problem. However, if one neural network
will train another with a similar structure, then at
some point in time these two networks will become
symmetrical and will give the same result with the
same data set, even if the learning process
continues. Suppose we have a learning network and
the network that it teaches. Thus, the training
network will provide its partner with sets of data,
input and output, on which the second network will
be trained. After a certain number of operations,
both networks are synchronized and their weight
vectors will be correlated, and upon receipt of input
data not belonging to the training sample, both
networks will continue to give identical results [8].

X

Figure 1 — Two perceptrons receive an identical
input X and learn their mutual output bits o

As an example, fig. 1 shows the mutual
learning of neural networks for a simple system:
two perceptrons receive a common random input
vector x and change their weights w according to

their mutual bit o [9].

Mutual learning of networks can be done in
two ways: batch and interactive. In batch training,
all training sets are saved and subsequently used to
minimize learning errors. In interactive training,
only one new example is saved for use at each step
of the training, so such training can be considered
as a dynamic process. In interactive learning,
examples are generated by a static learning
network, however, the learning network can also
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generate examples and participate in the process of
mutual learning [10].

In mutual learning, in which both the
learning network and the network that is learning
take part, it is almost impossible to learn the same
third network, which has the ability to intercept the
data sent for training, since it will not be able to
participate in the process of creating new vectors
for learning. This makes the peer-to-peer learning
process safe and allows learning through the open
channel.

Use of synchronized neural networks in
cryptography

Synchronization of two neural networks can
be used to generate keys in cryptography. Based on
the identical weights of two synchronized neural
networks, you can create a key or a one-time
notepad, which can later be used as an initial
number for generating pseudorandom sequences,
which can also act as a key [8, 11]. When creating
two neural networks on the basis of which keys will
be created, it should be borne in mind that in order
to prevent hacking, it is necessary to hide as much
information as possible so that an attacker could not
synchronize his network with the system. But at the
same time, enough information should be
transmitted for synchronization [11]. In [12], to
solve such a problem, it was proposed to use
multilayer networks with hidden elements. Based
on them, the algorithm of tree parity machines
(TPM) was created, the synchronization of which is
similar to the synchronization of two chaotic
oscillators in the theory of chaotic connections.

The tree parity machine (TPM) is a special
(fig. 2) type of multilevel direct distribution neural
network. This neural network has one output
neuron, K hidden neurons and K x N input neurons.

O
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Figure 2 — Structure of tree parity machines
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Input neurons X;;j take binary values:
The weights between the input and hidden
neurons Wijj are:

w, e{-L,...,0,..+ L}. @)

The value for each hidden neuron oj is the
sum of the products of the input value and the
weight coefficient:

N
o; = Sgn(z Wi X;;) ®)
i1

-1 if
(4)

The value of the output neuron is the product
of all hidden neurons K:

T= ﬁai. (5)
i=1

The output value under these conditions is
also binary [10].

To modify the weights of networks A and B,
you can use the following training rules [11]:

Hebb's Anti Rule:

W' ew, +0,%60(c,7)0(c*c"), (6)
Hebb's Rule:

W ew —ox.0(c,r)0(r%c"), (7)

Random straying:
W' ew, +x0(c,7)0(z%c") . (8)
Studies have shown that for large values of L
(2), the synchronization time of a third-party
network is so long that an attack of a system with
such an architecture is impossible. This means that
this approach is safe and with an increase in the
number L, the cryptographic stability of the system
increases, but in this case, the computational
complexity and time required for synchronization

increases. Therefore, the use of such systems to
transmit large data streams is difficult [10].

Xx<0
x>0

Group mutual

training

synchronization using

The algorithm described in the previous
section assumes the synchronization of neural
networks with the subsequent creation of an
encryption key for only two end users, however, in
modern realities, it is often necessary to create a
group encryption key. The way out of this situation
is a group synchronization mechanism using tree
parity machines. Group synchronization
mechanisms are presented in the work [13].

The essence of the algorithm is that N TPM
must be synchronized together, and they are
represented by M number of leaves of the complete
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parity tree. There are two approaches to collective
synchronization of TPM:

— Binary Tree with Election (BTWE);

—Binary Tree with Swap (BTWS).

In the end, both give the desired result, but
come to it in different ways.

Binary Tree with Election

With the BTWE approach, N TPMs are
represented by M leaves, at each iteration of the J
algorithm, the parity tree is divided by 2 and
mutual learning is applied for each pair of leaves
sharing the same parent. In the next step, J
increases and in each subtree TPM nodes are
selected, which also use the mutual learning

algorithm, and then send bits to their subgroups.

Such iterations continue until the root is
reached by the algorithm, after which it ends. If the
root is synchronized, then all TPMs are also
synchronized and have the same weight vectors
[12].

“ iy

A LS

Figure 3 — Sequence of Neural synchronization
between four TPMs using BTWS

Binary Tree with Swap

In the BTWS approach (Fig. 3), the mutual
learning algorithm is applied between every two
sides having the same parent in the even tree
structure. If mdepth is the maximum possible
depth of the binary tree, and cdepth is the depth at
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which the algorithm is at a given time. Starting Neural networks have such properties as:
from depth = mdepth - 1, the mutual learning mutual learning, self-learning and stochastic
algorithm is applied between each pair of leaves behavior, low sensitivity to noise and inaccuracies.
(TPM), which belong to the same parent. After These properties allow solving various problems of
synchronization is achieved, a transition to a higher cryptography with a public key, a private key,
level is performed (cdepth = cdepth - 1), and a hashing, generating pseudorandom numbers, etc.
permutation mechanism is applied between all the And, importantly, they allow generating a secret
subtrees of this cdepth between the right leaves of key without the need for its subsequent transfer to
the right and left branches. As soon as the value the recipient, based on synchronization the neural
cdepth becomes equal to zero, all leaves (TPM) networks with the same structure. This approach
will be synchronized [13]. makes it possible to significantly increase the
The presented methods use simple security level of cryptosystems with a private key.
calculations and allow you to quickly create a group In addition to the possibility of creating
secret key. However, these algorithms are very paired systems, based on this approach, group
vulnerable in cases where an attacker can neural systems with the generation of a secret key
participate in the protocol and obtain a secret key. can be created by synchronizing all neural networks
Based on this, there is a need for an authentication in the group. However, when using this approach in
scheme to protect the group from such attacks. significantly large groups of users, the problem of
To build an authentication scheme, it is minimizing the time spent on group networks
assumed that the group receives a secret password synchronizing arises. A lot of factors influence the
that can be used to authenticate the exchange time of network synchronization in a group:
protocol. This password can be mapped to some —frequency of feedbacks when
public parameter of neural cryptography, which synchronizing every two neural networks or two
becomes secret and, therefore, provides suitable groups of neural networks (less is faster, more is
privacy. safer).
In [14], an authentication scheme that keeps —the total quality of group members (more
input patterns secret was proposed. Therefore, only is longer).
parties that know a secret can synchronize together. —the total quality of elements in the
Also in [13], a scheme was proposed in which the structure of the neural network (less is faster, more
password was used as a seed for a random number is safer).
generator that encrypts output bits in the same way —the quality of hidden network elements
as [15, 16, 17]. compared to open ones (less is faster, more is
The BTWE and BTWS algorithms are a safer).
logical continuation of the peer learning algorithm. Further research is aimed at modeling and
It was also shown [13, 18] that the complexity of testing systems with various variations of the above
the algorithms is logarithmically proportional to the parameters. This will determine the degree of
number of parties that need to be synchronized influence of each of them on the total time of group
together. From which we can conclude that with the networks synchronization.
growth of the size of the group, synchronization In the future, modeling and testing will
time of the subscribers of the group will also allow us to consider possible ways to modernize
increase. existing approaches in order to create a distributed
system for group generation of a secret key with
Conclusion acceptable time characteristics and preservation of

The paper discusses existing approaches to the cryptographic  strength of the system.

using the mutual learning properties of neural

networks.
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BUKOPUCTAHHSA B3AEMO/JIIIOYNX HEMPOHHUX MEPEX B KPUIITOT PA®Ii

OO04KCITIOBANBHI MTOTYKHOCTI KOMIT'TOTEPHOT TEXHIKH Ta 00CST MepeJaHuX JaHUX HEYXHIBHO 3pOCTAIOTh 3
KOKHMM JHEM. Y 3B'A3Ky 3 LM ICHYIO4Yi alrOpUTMH HIM(PYBaHHS IIBUAKO 3acTapiBalOTh yepe3 HEJOCTATHIO
KPHUITOCTIHKICTE 200 MPOMYCKHY 3IaTHICTh. 3'SBISE€ThCA MOTpeda y MOCTIHHOMY CTBOPCHHI HOBHX METOMIB
mmdpyBaHHS abo K Momu(ikamii ctapuX. B SKOCTI HOBHX aNTOPUTMIB MOXXYTh BHCTYIUTH alTOPUTMH, IO
BUKOPUCTOBYIOTH HEHpPOHHI Mepeki. B maHiii cTaTTi HaBeJeHi iICHYIOU1 alTOpUTMH, CTBOPEHI Ha OCHOBI B3a€MHOI1
CHHXpOHI3anii HeHpoHHNX MepeX. OnHMcaHo OCHOBHI IPUHIUIN IX OOYIOBH 1 3acToCyBaHHA. Bennke 3HaueHHA
HATa€ThCA TPOOJIEMATHIIl BUKOPHUCTAHHA HEHPOHHHX MeEpeX, sSKi OepyTh ydacTh B TPYHOBIA CHHXPOHI3aIlil.
Bupineno ¢akropy, mo BIUIMBAIOTh SK HA 3arajlbHM 4Yac CHHXPOHI3allii MepeX, TaKk 1 Ha MOTEHIIHHY
KPHUITOCTIHKICTD, TaKi SIK: KUJIbKICTh BXIJIHUX 1 NPUXOBAaHUX HEHPOHIB, KUIBKICTh MEPEX, 10 OepyTh y4acTh B
CHHXpOHI3allii, Tono. Y BUCHOBKY OyJM BUIIIJIEHI OCHOBHI HAIIPSMKH MOJAJbIIOT0 AOCII/KEHHs, 3aCHOBaHI Ha
iCHytOuiil Mpo0IeMaTHIl JOCIIIKEHUX METOIIB 1 i IXOIiB.
Kniouogi cnoea: Heiiponni mepesici, 0epesoGUOHI MAuwiUHU RAPHOCMI, CUHXPOHI3aYin, Kpunmozpadgis,
wugpysanns.
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I'BY3 «/loHeukuil HallMOHAJIbHBIA TEXHUYECKUH YHUBEPCUTETY, I'. [lokpoBCcK, YKpauHa
eab23may@gmail.com, mykyta.aleksandrov@donntu.edu.ua
MCHOJIb30BAHUE B3AUMOJIEMCTBYIOIMX HEMPOHHBIX CETEMA B KPUIITOIPA®UU
BrrunciuTensHble MOIIHOCTH KOMIBIOTEPHON TEXHMKM M 00BEM IepeJaBacMbIX JAaHHBIX HEYKIIOHHO
pacTyT ¢ KaXIbIM JHEM. B CBSI3U € 3THM CyLIECTBYIOIIUE AITOPUTMBI IU(PPOBaHHs OBICTPO yCTapeBaroOT 10
MPUYMHE HEZOCTATOYHONW KPUNTOCTOHKOCTH WM MPOIMYCKHOH crocoOHocTH. [losBisercs HE0OXOAUMOCTH B
MOCTOSSHHOM CO3/IaHMHM HOBBIX METOJIOB IMM(POBAaHUS WM XK€ MOAM(UKAIUU cTapblX. B KadecTBe HOBBIX
ITOPUTMOB MOTYT BBICTYNHTh AITOPUTMBI, MCHOIb3YIOIUE HEHpPOHHBIE CETH. B naHHON cTaThe MPHUBEICHBI
CYLIECTBYIOIUE aITOPUTMBI, CO3JaHHBIE HA OCHOBE B3aMMHOM CHHXPOHHM3AaLMM HEHPOHHBIX ceTed. OnucaHsl
OCHOBHBIC NPUHIMIBI WX IIOCTPOCHUS W NpPUMEHEHMs. boiblioe 3HAa4YeHHEe NpHIaeTcs NpoOJIeMaTHKe
UCIIOJIb30BAaHMsI HEHMPOHHBIX CETel, KOTOpble Y4acTBYIOT B TPYIIIOBOM CHHXpOHM3alMH. BeigeneHsl ¢akTopsl,
BIIMSIIOIIME KaK Ha oOliee BpeMsi CHHXPOHHU3ALMHU CETeH, TaK W Ha MOTEHIHMAIbHYIO KPHITOCTOMKOCTB, TaKHe
KaK: KOJIMYECTBO BXOAHBIX U CKpBITBIX HEHpPOHOB, KOJIMYECTBO CE€TeH, NPUHHMAMOIINX Yy4yacThe B
CHHXPOHM3AINH, U T.A. B 3axmoueHny OBIIN BBIJICIEHBI OCHOBHBIE HAIIPABICHHUS JAJbHEUIIEr0 MCCIEJOBAHUS,
OCHOBAHHBIE Ha CYNIECTBYIOIIEH POOIeMaTHKe HCCIEAOBAHHBIX METOIOB H MTOIX0/I0B.
Kniouegvie cnoga: neiiponnsie cemu, 0pegosuoOHble MAWIUHbL YeMHOCHU, CUHXPOHU3AYUA, KpUnmozpagusa,
wugposanue.
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