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A B S T R A C T

The effect of temporal delay and relaxation on the structural order parameter (OP) in the course of plastic
deformation by twisting is theoretically analyzed. It is shown that an anomalous behavior of the OP modulus
takes place. The analysis is based on the Landau-Khalatnikov equation.

1. Introduction

At the moment, the severe plastic deformation (SPD) is applied to
the materials of different nature, namely, polycrystalline metals [1–3],
shape memory alloys [4–6], alloys characterized by phase transitions
and stratifications [7,8], amorphous and semi-crystalline alloys [9–11],
polymers [12–14]. At the same time, the processes of generation and
annihilation of the defects within the material [15–17] can be accom-
panied by modifications of phase and component composition, mag-
netic and structural ordering. The classical theory of phase transitions is
based on the idea that there exist ideally symmetric crystals. The effects
of the structural defects that are inevitably present in real objects are
neglected or taken into account in the lowest approximation [18].

At the same time, SPD enhances the density of the structural defects
to the level when their effect cannot be neglected. They distort the
symmetry of the phases on both sides of a phase transition and modify
the energy physics of the material [19]. In particular, interactions of the
symmetry order parameters and the densities of structural defects in the
course of processing by twisting under pressure are of great interest
[20].

Abrasion processing of inter-metallic compound of Fe3Al [21] sup-
plemented by volume processing by SPD [22] has demonstrated com-
plex non-monotonic behavior of the parameters in the course of treat-
ment including a decrease in the structural order parameter down to
almost zero value and a succeeding increase resulting in a stable value
capture (see Fig. 2 in Ref. [22]). This behavior can be determined by a
joint effect of a temporal delay and relaxation in the course of twisting.
The present work reports the study of possible mechanisms of the
anomalies.

2. Theory

When a plastic deformation of any type is applied, four zones can be
separated. The first zone is characterized by elastic behavior only.
Plastic deformation becomes substantial within the second one. The
third zone is an area of prevailing plastic deformation. The fourth zone
associated with a fracture, we do not consider here. It should be noted
that a conventional criterion of the separation of the first zone and the
second one is absent. This fact is determined by substantial effect of
plasticity on the behavior of the material even under small deformation.

All the of aforesaid is also related to plastic deformation of twisting
about a crystal axis. The further analysis is based on the explicit de-
pendence of the modulus of twisting moment M on the number of re-
volutions N. To establish the dependence, generally, the description of
the evolution of structural defects [15,23,24] and their effect on the
plastic yield stress of the twisting moment is required. The problem
becomes more complex, so simplifying assumptions should be made.
Namely, at high N, the system achieves constant stationary values.
Thus, the modulus of the twisting moment M depends on the number of
revolutions N as a function characterized by a horizontal asymptote

=M α α Ntanh ( )1 2 (1)

where α1 and α2 are phenomenological constants. The choice is based on
the fact of constant M within the third zone because the twisting mo-
ment is determined by the elastic component of deformation only.

Suppose that the second-order phase transition results in formation
of a highly-symmetrical state characterized by vector order parameter q
and non-zero Lifshits invariants. Non-equilibrium thermodynamic po-
tential is written as
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where γi (i = 1, 2), bi (i= 1, 2, 3) are phenomenological constants, Φel

is the potential of elastic interaction related to the elastic tensor. The
terms that include derivatives describe spiral structure generated as a
result of twisting. The next to last term in (2) accounts for the pre-
history, factor A(x) determines the law of distribution of interaction in
the past. In particular, the law can describe the preceding states totally
or partially as well as the rate of decrease in the interaction (ex-
ponential, elliptical, linear etc.). After the equilibrium values of the
elastic tensor components are found as functions of q(N) and the ob-
tained results are substituted in (2), we get a non-equilibrium ther-
modynamic potential without term Φel that is analogous to (2). As a
result, the expansion coefficients will depend on the components of the
elastic tensor and the twisting moment, in turn. When expanding the
coefficient of the fourth degree of the structural OP into a series in
square twisting moment, in the first approximation, the new coefficient
at the fourth degree has the form (1 + BM2)b2, where B is a phe-
nomenological coefficient. The related Euler equation that determines
the minimum of the functional (2) is a second-order differential equa-
tion with the solutions written as follows if the terms including the first-
order derivatives are taken into account

= =q q kz q q kzcos( ), sin( )x y (3)

where k is the modulus of propagation vector. After substituting (3) into
(2), differentiation with respect to k results in

= −
−

k
M γ

γ2

s r
1

2 (4)

According to estimations reported in Ref. [25], s–r= 4. In the pre-
sent work, s= 6, r=2.

Account of deformation implies that the system passes to a non-
equilibrium state as a result of a process. Transition to the equilibrium
state is due to a relaxation in some time period. Thus, under in-
stantaneous relaxation, the solution of the state equation will be formed
by the equilibrium states. At the finite relaxation time and fast external
action, the states are non-equilibrium and the modulus of the structural
OP is modified. The delay of the equilibrium state can be described by
the Landau-Khalatnikov equation

∂
∂

= −
q
t

γ q δΦ
δq

( )
(5)

where γ q( ) characterizes the rate of the system relaxation to the equi-
librium state, δΦ

δq
is the functional derivative, t is time. Generally γ q( ) is

temperature dependent, but we neglect this fact. According to the de-
finition of functional Φ (2), with account of constant modulus of an
irreducible OP along the axis of twist at fixed time and the number of
revolutions, equation (5) is written in the form
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where =N N t( ). Further, we suppose that the rate of twisting is small
enough and the adiabaticity condition is not valid.

We analyze three variants of time dependence of the number of
revolutions here: ∼ ∼ ∼N t N t N t, ,1 2

2
3 . The dependences imply

steady rotation, rotation with positive and negative acceleration, re-
spectively. Equation (6) was solved numerically using the MatLab
package. It should be noted that the selection of the phenomenological
coefficients in (2) is determined by the analyzed compound. In the
present work, the values are selected to provide existence of real so-
lutions of state equation (6).

3. Results and discussion

When analyzing state equation (6), we suppose that γ q( ) is a con-
stant.

1) Without of prehistory account. The results of theoretical analysis of
time dependence q t( ) at varied twisting conditions are presented in
Fig. 1. The dash-dotted line is the linear dependence ∼N t1 , the
dashed line is the square dependence ∼N t2

2 and the dotted line
marks the rotation with negative acceleration ∼N t3 . For the sake
of comparison, solid line illustrates q N( ) without relaxation (the
system is in the equilibrium state at any twisting moment) at ∼N t
(steady rotation).

From the mathematical viewpoint, the minimum of function q t( ) is
determined by competition of the fourth-order terms and the first-order
derivatives in thermodynamic potential (2). At small values of ∼N t
(the first zone), the coefficient of the fourth degree of the OP prevails
and the modulus of q t( ) is reduced. Within the second zone, the terms
associated with the first-order derivatives become substantial and the
contribution of plastic deformation is large. This fact results in an in-
crease in the modulus of the structural OP. Within the third zone, the
twisting moment and the potential are constant, so the OP is in-
dependent of the number of revolutions.

From the viewpoint of physics, a stable state of a crystal is char-
acterized by some energy minimum. At high temperature, the global
minimum is of highly symmetrical state. At the temperature drop, an
additional minimum arises that is associated with a state of low sym-
metry. Under further temperature decrease, the low-symmetry phase is
of lower energy. If the system is located below the temperature of
transition in the area of lability, where two minima coexist, and the
twisting deformation is applied, the elastic component enhances the
energy of the system. As a result, the minima of high- and low-sym-
metry phases start convergence and the reverse transition to a high-
symmetry state becomes favorable. Thus, the modulus of the OP is re-
duced.

Further, increase if N reduces a contribution of the elastic compo-
nent according to (1). A spiral structure becomes the most favorable
state of the system.

As a result, the energy of the crystal decrease and the modulus of the
OP rises. In the steady mode, the contribution of the elastic component
stays constant, being accompanie by a fixed energy of the system and
the modulus of the OP becomes independent of the number of revolu-
tions. As shown in Fig. 1, an account of possible relaxation results in an
increase in the modulus of the structural OP and a shift of the minimum
of q t( ) towards later moments.

The lowest shift is generated by the linear dependence ∼N t1 , the
highest one is related to ∼N t3 . One should note unusual behavior of
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Fig. 1. Rotation without an account of prehistory.
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the dotted line (exponential distribution) characterized by a plateau at
minor values. This fact is determined by low twisting rate in this area,
so the energy of the sample stays almost the same. The ratio of the
energies in the highly-symmetrical and low-symmetrical phases is
stable, resulting in local stability of the structural order parameter. In
the last two cases, the twisting rate in the vicinity of zero time is higher.
The equalization of the energies of highly-symmetrical and low-sym-
metrical states proceeds faster and the value of q t( ) is reduced faster,
too. The case of ∼N t3 is of the highest rate and a reduction of q t( ) is
faster, consequently.

2) In view of prehistory

a) We consider the case of ∼N t1 (rotation at a constant angular ve-
locity). From the viewpoint of Physics, due regard to the prehistory
means that there exist areas with the frozen preceding values of the
twisting moment within the crystal. The size of the areas and their
interaction with the current state may vary. The areas evolve and
their size is fast reduced. From the viewpoint of Mathematics, the
relation of these area and the current state can be described by a
distribution function.
In Fig. 2, the results of theoretical calculations inclusive of four
distribution laws of prehistory are presented. The solid, dotted,
dash-dotted and dotted lines mark rectangular (ΔN < N), ex-
ponential, elliptical (ΔN < N) and linearly descending (ΔN < N)
distribution law, respectively. A sharp change of the monotonous
solid line in the vicinity of ∼t 5,5 arises due to the fact that pre-
ceding states become not involved to the prehistory and their con-
tribution is of the same intensity. With respect to this fact, in the
third zone, q t( ) demonstrate substantial convergent oscillations in
the vicinity of the minimum of the non-equilibrium potential that is
an evidence of gradual approaching the equilibrium. The first peak
is determined by a sharp rejection of sharply changeable initial
states. The next minimum arises as a result of the rejection of the
states in the vicinity of ∼t 5,5. An analogous feature is less pro-
nounced in the rest of cases because the rejections occur at small
parameter of distribution A x( ). The anomaly is almost invisible at
the exponential distribution law. An increase in the relaxation
constant results in smoothing of q t( ) within the third zone (Fig. 3).
We should also note abrupt decrease in the modulus of the OP at
small time values.

b) Time dependence of the number of revolution is quadratic ∼N t2
2

(rotation with constant acceleration). In Fig. 4, the results of theo-
retical experiment are presented as in Item 2a at four distribution
laws and small relaxation constant. As compared to Fig. 2, the
maxima become more explicit when passing to the third zone except
the case of the constant distribution law. The width of the maxima is
smaller and they are higher of that in case 2a. This effect is de-
termined by a higher rotation velocity in the present zone as com-
pared to the linear case. An increase in the relaxation constant re-
sults in smoothing of q t( ) within the third zone similar to that in
case 2a.

с) Suppose ∼N t3 (rotation with deceleration). In Fig. 5, the results

of theoretical experiment with four distribution laws of the pre-
history at small relaxation constant are presented. Comparison of
Figs. 2–5 shows that at small time values, the behavior of the
modulus of the structural OP does not depend on the twisting
character and the distribution law of the prehistory. This fact is
associated with the prevailing effect of the fourth-order term of the
thermodynamic potential (2) within this time range. The compar-
ison of the last three figures demonstrates that due regard to the
prehistory results in a faster decrease in q t( ) at the initial time
moments and a vanishing plateau if ∼N t2

2. An increase in the re-
laxation constant is followed by vanishing maximum of q t( ) at the
boundary of the second zone and the third one in this case. The
related dependence becomes monotonic ascending after the
minimum.

4. Conclusions

1) Account for the prehistory results in emergence of a local maximum
at the boundary of the second zone and the third one.

2) Account of the time delay affects the rate of decrease in q t( ) within
the first zone.

3) The rate of time evolution of the rotation function affects the be-
havior of q t( ) within the third zone.
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Fig. 2. Steady rotation. Small value of the parameter of system relaxation.
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Fig. 3. Uniform rotation. Great value of the relaxation parameter.
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Fig. 4. Steady rotation.
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Fig. 5. Rotation with negative acceleration.
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