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The problems of obtaining solutions for partial differential 

equations with the help of the method of lines are considered, 

which is a semi-discrete method with discretization over spatial 

variables. Such an approach made it possible to effectively 

implement a large class of evolutionary equations. The problems 

of solving the received SODEs by collocation block methods are 

considered, allowing to provide an effective parallel 

implementation. Moreover, all the advantages of the solution 

(parallel step control, local error control, stability of the solution) 

are realized for the case of partial derivatives without significant 

increase in computational complexity. 
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I.  INTRODUCTION 

In this work, the main attention is focused on the control of 
the step of integration over time (τ-refinement) in the realization 
of the method of lines for partial differential equations by 
collocation block difference schemes. The method of straight 
lines [1-2] for simplicity of presentation is considered using the 
example of a one-dimensional parabolic equation and is a semi-
discrete method with discretization in terms of spatial variables, 
ensuring the reduction of the original evolution equation with 
partial derivatives 

𝜕𝑢

𝜕𝑡
= 𝑎2

𝜕2𝑢

𝜕𝑥2
+ 𝑓(𝑥, 𝑡), 𝑥 ∈ [𝑥0, L],   𝑡 ∈ [𝑡0, 𝑇]       (1) 

with initial condition of the form  

𝑢(𝑥, 𝑡0) = 𝑞(𝑥),                                  (2) 

boundary conditions of the first, the second or the third kind of 
Cauchy problem 

𝑢′ = 𝜑(𝑡, 𝑢(𝑡)), 𝑢(𝑡0) = 𝑢0, 𝑡 ∈ [𝑡0, 𝑇],              (3) 

described by a system of ordinary differential equations 
(SODE). Such an approach allows us to effectively implement a 
large class of evolutionary equations. However, after reducing 
the partial differential equation to the Cauchy problem for 
SODE, problems arise that were not characteristic of the original 
problem. So, if we consider explicit implementation patterns, 
then the choice of the step of integration over time is determined 
by the fulfillment of the Courant condition [3] and directly 
depends on the step size over the spatial variable. For the case of 
implicit difference schemes, the time step is regulated by the 
physical nature of the problem being solved and the order of 
approximation of the difference scheme(s). 

When it comes to numerical solution of the generated ODEs 
system, additional possibilities arise related to approximation of 
higher order (p-refinement), local error control and automatic 
change of integration step (τ-refinement). A significant 
influence on the error of the resulting solution will also be 
provided by questions related to the step change over the spatial 
variable (h-refinement). However, in this case, a simple 
reduction of the spatial step by a certain coefficient γ leads to an 
increase in the dimension of the formed SODE by the same 
coefficient, which considerably complicates the solution. 
Therefore, in this section we will consider questions related only 
to τ-refinement, which is especially important for the numerical 
solution of rigid differential equations. At the same time, the 
issues of correlating the errors of the results and the time spent 
on obtaining the solution are relevant. 

II. CONTROLLING THE STEP ON COLLOCATION SCHEMES WHEN 

IMPLEMENTING EVOLUTION EQUATIONS BY THE METHOD OF 

LINES 

The approaches considered in [4-5], connected with the 
control of the local error based on the comparison of solutions 
obtained with different orders in coinciding points of the block, 
is very effective in solving non-rigid equations and systems and 
can be used to estimate the error of the solution obtained. If we 
obtain a priori estimates of the integration step to ensure a given 
accuracy before the count begins, then it can be asserted that in 
any part of integration the error obtained does not exceed the 
specified error. But, unfortunately, this approach cannot provide 
a change in the integration step at the time of invoice. This 
question becomes most relevant when the desired function (s) at 
individual areas of integration is characterized by different rates 
of change. In this case, it is advisable to use the adaptable step 
for integration, which does not allow to provide the calculated 
collocation schemes [6]. To eliminate this drawback, new 
calculation schemes can be introduced, which will also be based 
on interpolation polynomials whose degrees coincide with the 
number of collocation points, and the values of the polynomials 
at these points coincide with the right-hand sides of the 
differential equation at the calculated points [5-6]. But the 
collocation points do not necessarily have to be a uniform grid, 
although it is desirable (but not necessary) that they be related to 
each other by some proportionality factors, for example, powers 
of two. Since it is a question of multi-step methods, it is 
necessary to select a set of points forming a support block 

𝑡𝑛,𝑖 = 𝑡𝑛,0 + 𝑖𝜏𝑛 ∈ [𝑡𝑛,−𝑚+1, 𝑡𝑛,0], 𝑖 = −(𝑚 − 1), −(𝑚 −
2), … ,0, 
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as well as two sets of points that will form the calculation blocks 

𝑡𝑛,𝑖
(1)

= 𝑡𝑛,0 + 𝑖𝜏𝑛1
∈ [𝑡𝑛,0, 𝑡𝑛,𝑠1

], 𝑖 = 1,2, … , 𝑠1, 

𝑡𝑛,𝑖
(2)

= 𝑡𝑛,0 + 𝑖𝜏𝑛2
∈ [𝑡𝑛,0, 𝑡𝑛,𝑠2

], 𝑖 = 1,2, … , 𝑠2. 

The simplest way to do this is to associate the integration 
steps 𝜏𝑛1

 and 𝜏𝑛2
 with the relations 𝜏𝑛1

= 2𝜏𝑛2
. Then the 

dimensions 𝑠2 = 2𝑠1. should be fulfilled between the 
dimensions of the calculated blocks. The account, as in the 
previous case, will be executed in parallel for two computational 
schemes with the same dimensions of the reference blocks and 
with the dimensions of the calculated blocks that differ in  𝑠2/𝑠1 
times. The canonical form of multi-step collocation methods 
with the number of reference points m and the number of 
calculated points 𝑠1 and 𝑠2, respectively, will have the form 

𝑢𝑛,𝑖
(1)

= 𝑢𝑛,0 + 𝜏𝑛 ∑ 𝑏𝑖,𝑗
(1)

𝐹𝑛,𝑗

0

𝑗=1−𝑚

+ 𝜏𝑛1
∑ 𝑎𝑖,𝑗

(1)
 

𝑠

𝑗=1

𝐹𝑛,𝑗
(1)

, 

 𝑖 = 1,2, … , 𝑠1,                                  (4) 

𝑢𝑛,𝑖
(2)

= 𝑢𝑛,0 + 𝜏𝑛 ∑ 𝑏𝑖,𝑗
(2)

𝐹𝑛,𝑗

0

𝑗=1−𝑚

+ 𝜏𝑛2
∑ 𝑎𝑖,𝑗

(2)
 

𝑠

𝑗=1

𝐹𝑛,𝑗
(2)

, 

 𝑖 = 1,2, … , 𝑠2, 

where 𝑢𝑛,𝑖
(1)

, 𝑢𝑛,𝑖
(2)

 –  are approximate values of the solution of the 

Cauchy problem (3) at the points 𝑡𝑛,𝑖
(1)

, 𝑡𝑛,𝑖
(2)

 respectively, 

𝜏𝑛 , 𝜏𝑛1
, 𝜏𝑛2

 – are the steps of integration in the reference 

block, in blocks of dimension 𝑠1 and 𝑠2, respectively, 

𝐹𝑛,𝑗 = 𝜑(𝑡𝑛 + 𝑗𝜏, 𝑢𝑛,𝑗) – are the right-hand sides of the 

equation (3) at the points, 𝑗 = −(𝑚 − 1), −(𝑚 − 2), … ,0, 

𝐹𝑛,𝑗
(1)

= 𝜑(𝑡𝑛 + 𝑗𝜏𝑛1
, 𝑢𝑛,𝑗), 𝑗 = 1,2, … , 𝑠1, 

𝐹𝑛,𝑗
(2)

= 𝜑(𝑡𝑛 + 𝑗𝜏𝑛2
, 𝑢𝑛,𝑗), 𝑗 = 1,2, … , 𝑠2, 

𝑎𝑖,𝑗
(1)

, 𝑏𝑖,𝑗
(1)

, 𝑎𝑖,𝑗
(2)

, 𝑏𝑖,𝑗
(2)

 – coefficients of the design schemes (4). 

 

 

Fig. 1. Scheme of fixing the reference, calculated and intermediate points 

To delineate the calculated and sought-for points, 
appropriate notation and representation of them in the vector 
form were implemented. 

𝑈𝑛 = {𝑢𝑛,𝑗}, 𝑛 = 1,2, …,  𝑗 = −(𝑚 − 1), −(𝑚 − 2), … ,0 – 

the vector of counted points, 

𝑈𝑛+1 = {𝑢𝑛,𝑗}, 𝑛 = 1,2, …,  𝑗 = 1,2, … , 𝑠1 – the vector of 

the required points for the dimension of the block 𝑠1, 

𝑉𝑛+1 = {𝑢𝑛,𝑗}, 𝑛 = 1,2, …,  𝑗 = 1,2, … , 𝑠2 – is the vector of 

the desired points for the dimension of the block 𝑠2, 

𝐹𝑛,𝑗 = 𝜑(𝑡𝑛 + 𝑗𝜏𝑛 , 𝑢𝑛,𝑗), 𝑛 = 1,2, …, 𝑗 = −(𝑚 −
1), −(𝑚 − 2), … ,0, 

𝐹𝑛+1,𝑗 = 𝜑(𝑡𝑛 + 𝑗𝜏𝑛1
, 𝑢𝑛,𝑗), 𝑛 = 1,2, … , 𝑗 = 0, 1, … , 𝑠1, 

Ψ𝑛+1,𝑗 = 𝜑(𝑡𝑛 + 𝑗𝜏𝑛2
, 𝑢𝑛,𝑗), 𝑛 = 1,2, … , 𝑗 = 0, 1, … ,  𝑠2 – 

respectively, the right-hand sides of equation (6) at known and 
sought-for points, 

𝐴(1), 𝐵(1), 𝐴(2), 𝐵(2) – are the matrices of the coefficients of 
the difference schemes, 

𝑈𝑛,0 = (𝑢𝑛,0)𝑒 – is the solution at the point 𝑡𝑛,0, 

𝑒 – is a unit vector of dimension s. 

Then in vector form the system of equations (4) for the case 
under consideration will have the following form 

𝑈𝑛+1 = 𝑈𝑛,0 + 𝜏𝑛𝐵(1)𝐹𝑛 + 𝜏𝑛1
𝐴(1)𝐹𝑛+1,              (5) 

𝑉𝑛+1 = 𝑈𝑛,0 + 𝜏𝑛𝐵(2)𝐹𝑛 + 𝜏𝑛2
𝐴(2)𝛹𝑛+1. 

To begin the calculation, it is necessary to enter a set of 
reference values, which can be determined by a one-step method 
that provides the required accuracy of calculations. Then the 
search for a numerical solution can be reduced to a solution at 
each step of two nonlinear systems of equations (5), with a 
sequential definition of the vectors 𝑈1, 𝑉1, 𝑈2, 𝑉2 … After 
determining the unknown coefficients and forming the matrices 

𝐴(1), 𝐵(1) with dimensions 𝑠1 × 𝑚 and 𝑠1 × 𝑠1, 𝐴(2), 𝐵(2) with 
dimensions 𝑠2 × 𝑚 and  𝑠2 × 𝑠2, computations by a multi-step 
block method represented in the form of systems (5) can be 
reduced to the following iterative processes 

𝑈𝑛+1
(1) = 𝑈𝑛,0𝑒 + 𝜏𝑛𝐵(1)𝐹𝑛,                             (6) 

𝑈𝑛+1
(𝑟+1) = (𝑈𝑛,0𝑒 + 𝜏𝑛𝐵(1)𝐹𝑛) + 𝜏𝑛1

𝐴(1)𝐹𝑛+1
(𝑟),  

𝑛 = 1,2, … , 𝑟 = 1,2, … 𝑠1, 

𝑉𝑛+1
(1) = 𝑈𝑛,0𝑒 + 𝜏𝑛𝐵(2)𝐹𝑛, 

𝑉𝑛+1
(𝑟+1) = (𝑈𝑛,0𝑒 + 𝜏𝑛𝐵(2)𝐹𝑛) + 𝜏𝑛2

𝐴(2)𝛹𝑛+1
(𝑟),  

𝑛 = 1,2, … , 𝑟 = 1,2, … 𝑠2. 

The systems in (6) require preliminary determination of the 
values of the vector 𝑈0 at the reference points of the initial block. 

Determination of the initial values 𝑈𝑛+1
(1), 𝑉𝑛+1

(1) in the 
calculation blocks is carried out on the basis of the multi-step 
predictor method of Adams, which allows increasing the 
accuracy of the initial approximation. The computation of the 

approximate values 𝑈𝑛+1
(𝑟+1), 𝑉𝑛+1

(𝑟+1) of the solution of the 
Cauchy problem in each next computation block is carried out 
iteratively and independently. After obtaining the solution in the 
next block, the obtained values are compared in coinciding 
points. The magnitude of the norm of the discrepancy between 
the values of approximate solutions in the coinciding 𝑠1 nodes 
of the main block is decisive for deciding on the step size. 

Just as in the formation of multi-stage collocated block 
difference schemes, which are used to solve the initial Cauchy 



problem, when reducing equations (1), for controlling the 
integration step, it is necessary to first build several calculation 
schemes, namely: basic design schemes corresponding to 
integration with unchanged step, as well as the schemes to which 
the calculation will be transferred in case of providing an 
increase or reduction of the step. In this case, the steps for 
increasing the step (stretching) will characterize the changes 
only in the calculation block, and the reduction schemes will 
make changes both to the design and reference blocks. In fact, 
the generation of these schemes is reduced to the determination 
of the calculation coefficients and is carried out once, before the 
beginning of the calculations, implying their repeated use in 
solving various problems. For each type of difference schemes, 
the developed software system allows determining the 
maximum order of approximation and estimating the a priori 
error value at the nodes of the calculation block. 

III. NUMERICAL REALIZATION OF THE METHOD OF LINES WITH 

VARIABLE TIME STEP CONTROL (Τ-REFINEMENT) 

Experiments to control the step of integration with respect to 
the time variable (τ-refinement) were carried out for different 
values of the discretization step in space, based on the value of 
(h-refinement), the number of equations n in the SODEs (n=10, 
n=20, n=40). For test problems with a known exact solution, 
exact values were used to form values at m initial points. For 
cases where there was no exact solution, the required sets of 
initial values were determined by a one-step method with 
comparable accuracy. As the initial approximations 
𝐹𝑛,1, 𝐹𝑛,2, … , 𝐹𝑛,𝑠, the values calculated with the help of the 

predictor Adams [7] were used for the next calculation block. In 
conducting numerical experiments, in addition to the main 
indicators, the ratio of the number of effective steps to the total 
number of counts was also estimated. 

Test problem 1. The already known test problem [8] (1) with 
initial condition 

𝑢(𝑥, 0) = 𝑠𝑖𝑛(𝜋𝑥) + sin(𝑘𝜋𝑥),                        (7) 
boundary conditions of the first kind 

𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0,                                 (8) 
with known exact solution  

𝑢(𝑥, 𝑡) = 𝑒−𝜋2𝑎2𝑡𝑠𝑖𝑛(𝜋𝑥) + 𝑒−𝜋2𝑎2𝑘2𝑡𝑠𝑖𝑛(𝑘𝜋𝑥)  
was considered as experimental. As the stiffness parameter, the 
values 𝑘 = 1,2, … ,10. 

 

Fig. 2. Automatic change of the integration step for the problem (1, 7-8), 𝑛 =
10, 𝑘 = 2, 𝜀 = 10−6 

As shown in [8], methods without step control for such 
values of the parameter 𝑘 > 1 cannot provide the declared 
accuracy of the calculation. In fig. 2-3 graphs of step change in 
time variable, obtained during the implementation of the test 

task using the system of difference schemes (6) with the 
dimensions of the reference and calculation blocks 2×2 and 2×4 
are constructed.  

 

Fig. 3. Automatic change of the integration step for the problem (1, 7-8), 𝑛 =
10, 𝑘 = 10, 𝜀 = 10−6 

The dynamics of the step change was also investigated 
depending on the discretization step in space, the stiffness 
parameter k, which took values in the interval 1 ÷ 10, and the 
value of the given global error ε. 

Test problem 2. The test was performed for a parabolic 
equation with the known exact solution described in [9]. We 
consider a special case of the heat equation (1) with the values 
of the parameters 𝐿 = 1, 𝑇 = 1, 𝑎 = 1, with the initial condition 

𝑢(𝑥, 0) = 𝑠𝑖𝑛(𝜋𝑥/𝐿),                                          (9) 

boundary conditions of the first kind (8), and the known exact 
solution 

𝑢(𝑥, 𝑡) = 𝑒
−(𝜋2

𝐿2⁄ )𝑡
𝑠𝑖𝑛 (

𝜋𝑥

𝐿
). 

 

Fig. 4. Automatic change of the step for the problem (1, 8-9) in the method of 

lines, 𝑛 = 10, 𝜀 = 10−6 

 

Fig. 5. Automatic change of the step for the problem (1, 8-9) in the method of 

lines, 𝑛 = 20, 𝜀 = 10−6 

The experiment is aimed at conducting a comparative 
analysis of the results of numerical implementation using direct 



ones with an exact solution. The dynamics of the step change 
was investigated depending on the discretization step in space 
ℎ = 𝐿/𝑛, which determined the dimension of the system of 
ordinary differential equations 𝑛 = 10, 20, 40. Different 
consequences of global error ε were set. The method of lines was 
realized using difference schemes (6) with reference and 
calculation dimensions 2×2 (2×4) and 3×3 (3×6) (fig. 4-5). 

Test problem 3. Testing was carried out for the test problem 
Schisser [9]. We consider the heat equation (1) over space 
intervals −5 ≤ 𝑥 ≤ 5  and in time  0 ≤ 𝑡 ≤ 1, with the 
parameter 𝑎 = 1, using the initial condition 

𝑢(𝑥, 0) =
1

2
𝑒−(𝑥−1)2

+ 𝑒−(𝑥+2)2
,                   (10) 

with the known exact solution, with the boundary conditions on 
the left-Dirichlet and on the right-Neumann 

𝑢(−5, 𝑡) = 0,   𝜕𝑢(5, 𝑡)/𝜕𝑥 = 0.                    (11) 

The dimension of the system of ordinary differential 
equations for the method of lines was chosen for the values 𝑛 =
10, 20,40. These values of n determined the discretization step 
with respect to the space ℎ = 𝐿/𝑛. The value of the global error 
ε was set at the level 𝜀 = 10−6, 𝜀 = 10−9. To implement the 
method of lines, difference schemes (6) with dimensions of the 
reference and computational blocks 2×2 (2×4) and 3×3 (3×6) 
were used. The results of numerical simulation are presented in 
the form of step change diagrams (fig. 6). 

 

Fig. 6. Automatic change of the integration step for the problem (1, 10-11) in 

the method of lines, 𝑛 = 20, 𝜀 = 10−6 

In all the model experiments performed for this task, in 
addition to the requirements for retaining a given error, 
indicators were monitored that ensure the decision to change the 
step size (the inertia parameter, the number of iterations to refine 
the solution by the Newton method, the closeness of the current 
local error to the limit value, effective steps to the total number 
of counted, etc.). The obtained results testify to the high 
effectiveness of the proposed approach, which is based on the 
use of multi-step collocation block schemes with variable 
dimensions of support blocks and calculation blocks for 
automatic step control (τ-refinement) in the method of lines. 

IV. CONCLUSIONS 

The investigations carried out in this section have made it 
possible to propose new approaches to solving the problem of 
parallel control over the step of integration over a variable time 
in the realization of the method of lines for partial differential 

equations by collocation block difference schemes. For 
controlling the time variable step in evolution equations is based 
on the use of multi-step multi-point collocation block schemes 
with uneven arrangement of nodes connected by some 
proportionality coefficients. When modeling with the help of 
such schemes, the local error of numerical integration was 
estimated as the norm of the discrepancies of the solutions 
obtained with different order of approximation at coinciding 
points of the computational blocks. The value of the received 
error and the state of the values of the indicators were used to 
decide on the size of the next step in the variable time. This made 
it possible to provide the specified accuracy at each site. If it is 
necessary to shorten the step length, in the calculation schemes, 
the previously calculated values were used as intermediate ones, 
which made it possible to significantly reduce the number of 
computational operations.  

For the automatic generation of computing circuits, a 
software system based on the use of the integro-interpolation 
method has been developed, which makes it possible to generate 
the coefficients of difference equations with arbitrary 
dimensions of computational and reference blocks, with the 
possibility of transition to stretching-step compression schemes. 
The numerical solution for each calculation block was carried 
out by means of an iterative process, to accelerate the 
convergence, the initial approximations were determined using 
the Adams predictor method. The theoretical positions given in 
the paper are supported by experimental studies on test problems 
with known exact solutions. 
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