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ESTIMATION OF THE REACHABLE SET FOR THE PROBLEM
OF VIBRATING KIRCHHOFF PLATE

A. L. Zuev and Yu.V. Novikova UDC 531.39, 517.977

We consider a dynamical system with distributed parameters for the description of controlled vibrations
of a Kirchhoff plate without polar moment of inertia. A class of optimal controls corresponding to finite-
dimensional approximations is used to study the reachable set. Analytic estimates for the norm of these
control functions are obtained depending on the boundary conditions. These estimates are used to study
the reachable set for the infinite-dimensional system. For a model with incommensurable frequencies,
an estimate of the reachable set is obtained under the condition of power decay of the amplitudes of
generalized coordinates.

1. Introduction

The contemporary technical progress stimulates the development of new methods in the theory of optimal
control over systems with distributed parameters. In particular, new algorithms for the control over spacecrafts
must guarantee the stabilization not only of rigid structural elements but also of elastic elements [1]. For this
reason, the problems of simulation and synthesis of the systems of control over elastic panels connected with solid
bodies prove to be quite urgent [2].

In the study of vibrating plates, the Kirchhoff model is especially extensively used for the theoretical investiga-
tions [3–5]. A series of papers is devoted to the problems of control over the model of Kirchhoff plate. The bilinear
problem of optimal control for the equation of the Kirchhoff plate fastened along a part of the boundary of the
domain is studied in [6]. It is assumed that the distributed control force is proportional to the transverse component
of the velocity of the plate at every point of the domain. The problem of active control with several time delays for
the equation of free vibrations of a rectangular plate was considered in [7].

The many-dimensional linear vibrating systems of the block form were considered in [8]. A generalized
method of modal control is presented for these systems, including the case where restrictions are imposed on
the values of control. The problem of controllability for a class of linear infinite-dimensional systems with one-
dimensional control was investigated in [9]. In the cited work, one can also find necessary and sufficient conditions
for the exact, approximate, and zero-controllability of these systems.

The Kirchhoff model for a plate fastened to a rotating body was considered in [10, 11]. For this model,
the authors studied a system of ordinary differential equations used for the description of vibrations with finitely
many degrees of freedom.

The aim of the present paper is to investigate the reachable set of an infinite-dimensional dynamical system
with incommensurable frequencies for control functions of a special form.

2. Description of the Model

A mathematical model of small vibrations of an elastic Kirchhoff plate hinged to the boundary of a body was
proposed in [10]. The equations of motion of the analyzed problem for controlled rotations of the body about
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a fixed axis can be represented in the form

ẋkj(t) = Akjxkj(t) +Bkju(t), (1)

where

xkj(t) =

✓
⇠kj(t)

⌘kj(t)

◆
, Akj =

✓
0 βkj

−βkj 0

◆
, Bkj =

✓
0

'kj

◆
, u(t) 2 R, and (k, j) 2 N2.

The quantities ⇠kj(t) and ⌘kj(t) are, respectively, the modal coordinate and velocity for the mode of vibrations
with indices (k, j). The control u(t) corresponds to the angular acceleration of the body (carrier).

The coefficients of Eqs. (1) are specified by the parameters of the elastic plate as follows:

βkj = ↵

 ✓
⇡k

l1

◆2
+

✓
⇡j

l2

◆2!
,

'kj =

8
>>>>>>>>><

>>>>>>>>>:

0, k is even,

2l2
p
l1l2

⇡2kj
, k is odd, j is even,

2

p
l1l2(2a2 − l2)

⇡2kj
, k is odd, j is odd,

k, j 2 N2.

Here, ↵, l1, l2, and a2 are positive constants whose physical meaning is described in [10]. In what follows,
we always assume that 2a2 6= l2.

We now introduce complex variables

zkj = ⇠kj + i⌘kj ,

z̄kj = ⇠kj − i⌘kj .

Thus, system (1) in the variables zkj and z̄kj has the form

żkj = −izkjβkj + i'kju(t),

˙z̄kj = iz̄kjβkj − i'kju(t).

(2)

Since 'kj = 0 for even indices k, system (1) has an uncontrolled subspace corresponding to the modes
(⇠kj , ⌘kj) with (k, j) 2 S, where

S =

�
(k, j) 2 N2

: k is even
 
.

In what follows, we consider a subsystem of system (1) for the indices N2\ S. Consider a given one-to-one
mapping n 7−! (kn, jn) according to which the index n 2 N is associated with a pair of indices (kn, jn) 2 N2\ S.
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Denote

!n = βknjn = ↵

 ✓
⇡kn
l1

◆2
+

✓
⇡jn
l2

◆2!
, (3)

Bn = 'knjn =

8
>>>><

>>>>:

2l2
p
l1l2

⇡2knjn
, kn is odd, jn is even,

2

p
l1l2(2a2 − l2)

⇡2knjn
, kn is odd, jn is odd,

(4)

qn = zknjn , q−n = z̄knjn .

This enables us to rewrite system (2) in the operator form as follows:

q̇ = Aq +Bu, q 2 `2, u 2 R1, (5)

where

q =

0

BBBBBBBBBBB@

q−1

q1

q−2

q2

...

1

CCCCCCCCCCCA

2 `2, A = i

0

BBBBBBBBBBB@

!1 0 0 0 . . .

0 −!1 0 0 . . .

0 0 !2 0 . . .

0 0 0 −!2 . . .

...
...

...
...

. . .

1

CCCCCCCCCCCA

, B = i

0

BBBBBBBBBBB@

B−1

B1

B−2

B2

...

1

CCCCCCCCCCCA

,

!n = βknjn , Bn = 'knjn , B−n = −'knjn .

System (5) is considered in the Hilbert space `2 with the norm

kqk`2 =

 1X

n=1

�
|qn|2 + |q−n|2

�
!1/2

.

According to the Hille–Yosida theorem [12, p. 8], the operator A : D(A) −! `2 is an infinitesimal generator
of a C0 -semigroup of linear operators {etA}t≥0 in `2 .

Hence, for any q0 2 `2, ⌧ > 0, and u 2 L2
(0, ⌧), there exists a unique generalized solution q(t, q0, u)

of Eq. (5) with u = u(t), t 2 [0, ⌧ ], satisfying the initial condition q|t=0 = q0. This solution is given by the
formula [12, p. 184]

q(t; q0, u) = etAq0 +

tZ

0

e(t−s)ABu(s)ds, 0  t  ⌧.
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Consider the reachable sets [13]:

R⌧ (q
0
) =

�
q1 2 `2 : q1 = q(⌧ ; q0, u) for u 2 L2

(0, ⌧)
 
,

R(q0) =
[

⌧≥0

R⌧ (q
0
).

Recall that system (5) is approximately controlled if R(q0) = `2 for all q0 2 `2. The Levan–Rigby crite-
rion [14] is a standard method for the investigation of the controllability of systems of the form (5). This criterion
reduces to the analysis of invariant subspaces of the adjoint semigroup {etA⇤}t≥0 in the kernel B⇤. However,
the direct application of this approach does not enable us to estimate the reachable sets R⌧ (q

0
) and to construct

control functions guaranteeing the solution of two-point problems with given boundary conditions.
In the present paper, we use a family of functions corresponding to the finite-dimensional problems of optimal

control in order to estimate the reachable set R⌧ (q
0
) of system (5).

Parallel with system (5), we consider its finite-dimensional subsystem corresponding to the coordinates q−n,

qn, n = 1, N, for a fixed integer number N ≥ 1 :

˙q̃N = AN q̃N +BNu, (6)

AN = i

0

BBBBBBBBBB@

!1 0 . . . 0 0

0 −!1 . . . 0 0

...
...

. . .
...

...

0 0 . . . !N 0

0 0 . . . 0 −!N

1

CCCCCCCCCCA

, q̃N =

0

BBBBBBBBBB@

q−1

q1

...

q−N

qN

1

CCCCCCCCCCA

, BN = i

0

BBBBBBBBBB@

B−1

B1

...

B−N

BN

1

CCCCCCCCCCA

.

The optimal control for a finite-dimensional system of the form (2) with quadratic quality functional was found
in [11]. For system (6) with complex variables, the result obtained in [11] can be formulated as follows:

Lemma 1. Let !j 6= !k for all 1  j  k  N. Consider the problem of optimal control

˙q̃N = AN q̃N +BNu, t 2 [0, ⌧ ], (7)

J =

⌧Z

0

|u(t)|2dt −! min, (8)

q̃0N = q̃N (0) =

0

BBBBBBBBBB@

q0−1

q01

...

q0−N

q0N

1

CCCCCCCCCCA

2 C2N , q̃1N = q̃N (⌧) =

0

BBBBBBBBBB@

q1−1

q11

...

q1−N

q1N

1

CCCCCCCCCCA

2 C2N , (9)
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q0n = q0−n, q1n = q1−n, n = 1, N.

For the analyzed problem, the optimal control takes the form

ûN (t) =
�
B1e

i!1t, B−1e
−i!1t, . . . , BNei!N t, B−Ne−i!N t

�
⌫,

where

⌫ =

0

BBBBBBBBB@

⌫−1

⌫1
...

⌫−N

⌫N

1

CCCCCCCCCA

=

0

BBBBBBBBBBBBBB@

1

B1
0 . . . 0 0

0

1

B−1
. . . 0 0

...
...

. . .
...

...

0 0 . . .
1

BN
0

0 0 . . . 0

1

B−N

1

CCCCCCCCCCCCCCA

K−1

0

BBBBBBBBBBBBBB@

1

B−1
0 . . . 0 0

0

1

B1
. . . 0 0

...
...

. . .
...

...

0 0 . . .
1

B−N
0

0 0 . . . 0

1

BN

1

CCCCCCCCCCCCCCA

�
e−i!N ⌧ q̃1N − q̃0N

�
,

(10)

K = (Kjk)
N
j,k=1, Kjj =

0

BBBB@

⌧
i
�
e−2i!j⌧ − 1

�

2!j

i
�
1− e2i!j⌧

�

2!j
⌧

1

CCCCA
,

Kjk = i

0

BBBB@

1− ei(!k−!j)⌧

!k − !j

e−i(!k+!j)⌧ − 1

!k + !j

1− ei(!k+!j)⌧

!k + !j

1− ei(!j−!k)⌧

!j − !k

1

CCCCA
, j 6= k.

To study the reachable set of the infinite-dimensional system (5), we recall that a complex or real number χ
is called an algebraic number if it is a root of a polynomial with integer coefficients which are not simultaneously
equal to zero [15].

The number n⇤ is called a power of the algebraic number χ if χ is a root of a certain polynomial of degree n⇤

with integer coefficients and it is impossible to find a polynomial with integer coefficients of degree smaller than n⇤

which is not identically equal to zero and has the root χ.
We now formulate the main result of the present paper on the estimation of the states q1 2 `2 of system (5)

approximately reachable from the point q0 = 0 2 `2.

Theorem 1. Let the following conditions be satisfied for system (5):

(i) Bn 6= 0, n = ±1,±2,±3, . . . ;

(ii) χ =

✓
l2
l1

◆2

is an algebraic number of the power n⇤ ≥ 2;
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(iii) the coordinates of the vector q1 =

0

BBBBBBB@

q1−1

q11

q1−2

q12
...

1

CCCCCCCA

2 `2 satisfy the conditions

q1−n = q1n, |q1n| = O

✓
1

nγ

◆
, γ >

3

2

n⇤
+ 1,

for all n 2 N.

Then, for any " > 0, there exist numbers ⌧ = ⌧(") > 0 and N(") ≥ 1 such that

��q(⌧ ; 0, ûN )− q1
��
`2

< ", (11)

where ûN (t) is an optimal control for problem (7)–(9) of the form

ûN (t) =

NX

n=1

(Bne
i!nt⌫−n +B−ne

−i!nt⌫n), t 2 [0; ⌧ ].

Proof. Under the conditions of the theorem, χ is an irrational number. Hence, representation (3) yields the
property !j 6= !k for all j 6= k. Following the idea of [16], we estimate quantity (11) for controls of the form
u = ûN (t) in Lemma 1.

We introduce projectors QN : `2 −! `2 and PN : `2 −! `2 as follows:

PN : q =

0

BBBBBBBBBBBBBBBBB@

q−1

q1
...

q−N

qN

q−N−1

qN+1
...

1

CCCCCCCCCCCCCCCCCA

7−!

0

BBBBBBBBBBBBBBBBB@

q−1

q1
...

q−N

qN

0

0

...

1

CCCCCCCCCCCCCCCCCA

, QN = I − PN .

Then

��q(⌧ ; 0, ûN )− q1
��
`2

=

��QNq(⌧ ; 0, ûN )−QNq1
��


��QNq1

��
+

������

⌧Z

0

QNe(⌧−s)ABûN (s)ds

������
.
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Since the operators etA and QN are commuting, by applying the Cauchy–Buniakowski inequality, we obtain

��q(⌧ ; 0, ûN )− q1
��
`2


��QNq1

��
+ sup

t2[0,⌧ ]
ketAk kQNBk

⌧Z

0

|ûN (s)|ds


��QNq1

��
+

p
⌧kQNBk sup

t2[0,⌧ ]
ketAk kûNkL2(0,⌧).

It is clear that the norm of the operator etA : `2 −! `2 is equal to 1.

To prove the theorem, we show that, for any " > 0 and vector q1, there exist numbers ⌧ > 0 and N such that

��QNq1
�� <

"

2

, (12)

rN = ⌧kQNBk2kûNk2L2(0;⌧) <
"2

4

. (13)

Inequality (12) follows from the fact that

lim

N−!1

��QNq1
��2

= lim

N−!1

1X

n=N+1

�
|q1−n|2 + |q1n|2

�
= 0

for any element q1 2 `2.

To prove inequality (13), we determine the value of the norm of the optimal control:

��ûN (t)
��2
L2(0,⌧)

=

⌧Z

0

��ûN (t)
��2dt =

⌧Z

0

ûN (t)ûN (t)dt

=

⌧Z

0

 
NX

n=1

Bne
i!nt⌫−n +B−ne

−i!nt⌫n

! 
NX

n0=1

¯Bn0ei!n0t ⌫̄−n0
+

¯B−n0e−i!n0 t⌫̄n0

!
dt

=

NX

n=1

Bn
¯Bn⌫−n⌫̄−n⌧ +

NX

n=1

Bn
¯B−n⌫−n⌫̄n

i(1− e2i!n⌧
)

2!n

+

NX

n=1

B−n
¯Bn⌫n⌫̄−n

i(e−2i!n⌧ − 1)

2!n
+

NX

n=1

B−n
¯B−n⌫n⌫̄n⌧

+

NX

n=1

NX

n0=1

Bn
¯Bn0⌫−n⌫̄−n0

i(1− ei(!n−!n0 )⌧
)

!n − !n0

+

NX

n=1

NX

n0=1

Bn
¯B−n0⌫−n⌫̄n0

i(1− ei(!n+!n0 )⌧
)

!n + !n0
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+

NX

n=1

NX

n0=1

B−n
¯Bn0⌫n⌫̄−n0

i(e−i(!n+!n0 )⌧ − 1)

!n + !n0

+

NX

n=1

NX

n0=1

B−n
¯B−n0⌫n⌫̄n0

i(ei(!n0−!n)⌧ − 1)

!n − !n0
.

By using the triangle inequality and the Hölder inequality, we estimate
��ûN (t)

��2
L2(0,⌧)

as follows:

��ûN (t)
��2
L2(0,⌧)


NX

n=1

|Bn|2|⌫n|2
✓
2|⌧ |+ 2

|!n|

◆

+

NX

n,n0=1
n 6=n0

|BnBn0⌫n⌫n0 |
✓

4

|!n − !n0 | +
4

|!n + !n0 |

◆


NX

n=1

|Bn|2|⌫n|2
✓
2|⌧ |+ max

n,n0N

2

|!n|

◆

+

NX

n,n0=1
n 6=n0

|BnBn0⌫n⌫n0 |
✓

max

n,n0N

4

|!n − !n0 | + max

n,n0N

4

|!n + !n0 |

◆


NX

n=1

|Bn|2|⌫n|2
0

@
2|⌧ |+ 2

min

n,n0N
|!n|

1

A

+

NX

n,n0=1
n 6=n0

|BnBn0⌫n⌫n0 |

0

@ 4

min

n,n0N
|!n − !n0 | +

4

min

n,n0N
|!n + !n0 |

1

A

 max

n,n0N

8
<

:

0

@
2|⌧ |+ 2

min

n,n0N
|!n|

1

A,

0

@ 4

min

n,n0N
|!n − !n0 | +

4

min

n,n0N
|!n + !n0 |

1

A

9
=

;

⇥
NX

n,n0=1
n 6=n0

��BnBn0⌫n⌫n0
��

 max

n,n0N

8
<

:

✓
2⌧ +

2

!1

◆
,

0

@ 4

min

n,n0N
|!n − !n0 | +

4

!1 + !2

1

A

9
=

;

NX

n,n0=1
n 6=n0

��BnBn0⌫n⌫n0
��
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 4

min

n,n0N
|!n − !n0 |

NX

n,n0=1
n 6=n0

|BnBn0⌫n⌫n0 |. (14)

Introducing the notation

⌫̃n = ⌫nB−n, ⌫̃−n = ⌫−nBn,
2

min

n,n0N
|!n − !n0 | = H(N),

we reduce estimate (14) to the form

��ûN (t)
��2
L2(0,⌧)

 2H(N)

NX

n,n0=1
n 6=n0

|⌫̃n⌫̃n0 | = 2H(N)

NX

n0=1

 
NX

n=1

|⌫̃n||⌫̃n0 |
!

 2H(N)

NX

n0=1

0

@

vuut
NX

n=1

|⌫̃n0 |2

vuut
NX

n=1

|⌫̃n|2

1

A
= H(N)

p
2Nk⌫̃k2

NX

n0=1

|⌫̃n0 |

 H(N)

p
2Nk⌫̃k2

vuut
NX

n0=1

|⌫̃n0 |2

vuut
NX

n0=1

1

2
= H(N)Nk⌫̃k22, (15)

where

k⌫̃k2 =
NX

n=1

�
|⌫̃n|2 + |⌫̃−n|2

�1
2

is the Euclidean norm of the vector ⌫̃.
By Lemma 1, we get

⌫̃ = K−1y, (16)

where

⌫̃ =

0

BBBBBBB@

⌫̃−1

⌫̃1
...

⌫̃−N

⌫̃N

1

CCCCCCCA

and y =

0

BBBBBBBBBBBB@

1

B−1
0 . . . 0 0

0

1

B1
. . . 0 0

...
...

. . .
...

...

0 0 . . .
1

B−N
0

0 0 . . . 0

1

BN

1

CCCCCCCCCCCCA

(e−i!N ⌧ q̃1N − q̃0N ).

We now estimate the norm of ⌫̃. To this end, we represent the matrix K in the form K = ⌧I + C and
consider C as a linear operator from the space C2N with the norm k ·k1 into the space C2N with the norm k ·k1 :

C :

�
C2N , k · k1

�
−!

�
C2N , k · k1

�
,
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where

kyk1 =
NX

n=1

(|yn|+ |y−n|)

and kyk1 = max

1|n|N
|yn|.

We rewrite (16) in the form

K⌫̃ = (⌧I + C)⌫̃ = y, ⌫̃ =

y

⌧
− C⌫̃

⌧
.

This yields

k⌫̃k1  1

⌧

⇣
kyk1 + kC⌫̃k1

⌘
 1

⌧

⇣
kyk1 + kCkk⌫̃k1

⌘
,

k⌫̃k1
✓
1− kCk

⌧

◆
 1

⌧
kyk1,

k⌫̃k1  kyk1
⌧ − kCk under condition that kCk < ⌧. (17)

We estimate kCk as follows:

kCk  max

1nN

⇢
max

1mN
|Cnm|

�
= max

1nN

⇢����
i(e−2i!n⌧ − 1)

2!n

���� ,
����
i(1− e2i!n⌧

)

2!n

���� ,

max

1mN

⇢
2

|!m − !n|
,

2

|!m + !n|

��
 max

1nN

⇢
1

|!n|
, max

1mN

⇢
2

|!m − !n|
,

2

|!m + !n|

��
. (18)

In view of relation (3), we get

!n = βjnkn = ↵

 ✓
⇡jn
l1

◆2
+

✓
⇡kn
l2

◆2!
, !m = βjmkm = ↵

 ✓
⇡jm
l1

◆2
+

✓
⇡km
l2

◆2!
.

In view of the restrictions 1  n  N and 1  m  N, we obtain inequalities of the form 1  jm,

km, jn, kn  M(N) for some integer M(N),

M(N) = O(

p
N) as N −! 1. (19)

Thus, we can estimate expression (18) as follows:

kCk  max

jn,knM

8
<

:
1

βjnkn
, max

(jm,km)6=(jn,kn)
jn,knM

⇢
2

|βjnkn + βjmkm |
,

2

|βjnkn − βjmkm |

�9=

;
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 max

jn,knM

8
>>><

>>>:

1

min

jn,knM
βjnkn

,
2

min

(jm,km)6=(jn,kn)
jn,kn,jm,kmM

|βjnkn + βjmkm |
,

2

min

(jm,km)6=(jn,kn)
jn,kn,jm,kmM

|βjnkn − βjmkm |

9
>>>=

>>>;
.

Setting jn = p, kn = c, jm = m, km = s, and χ =

✓
l2
l1

◆2

, we get

min

(jm,km)6=(jn,kn)
jn,kn,jm,kmM

|βjnkn − βjmkm | =
↵⇡2

l22
min

(p,c)6=(m,s)
p,c,m,sM

|χp2 + c2 − χm2 − s2|.

Since χ is an irrational algebraic number of power n⇤ ≥ 2, by the Liouville theorem, we obtain

↵⇡2

l22
min

(p,c)6=(m,s)
p,c,m,sM

|χp2 + c2 − χm2 − s2| ≥ min

p 6=m
p,mM

↵⇡2R

l22|p2 −m2|n⇤−1
≥ ↵⇡2R

l22(M
2
(N)− 1)

n⇤−1
,

where R is a positive constant depending only on χ and expressed in the explicit form via the quantities conjugate
to χ [15].

Hence,

kCk  l22(M
2
(N)− 1)

n⇤−1

↵⇡2R
.

It follows from relations (15), (17), and (19) that

��ûN (t)
��2
L2(0,⌧)

 NH(N)kyk22 for ⌧ >
l22
�
M2

(N)− 1

�n⇤−1

↵⇡2R
= O(Nn⇤−1

). (20)

We now estimate the Euclidean norm of the vector y :

kyk22 =
NX

n=1

�
|y−n|2 + |yn|2

�
=

NX

n=1

|e−i!n⌧q1n − q0n|2 + |ei!n⌧q1−n − q0−n|2

|Bn|2

 2

NX

n=1

|e−i!n⌧q1n|2 + |ei!n⌧q1−n|2 + |q0n|2 + |q0−n|2

|Bn|2

 2

NX

n=1

|q1n|2 + |q1−n|2 + |q0n|2 + |q0−n|2

|Bn|2
.

Substituting the obtained expression in the left-hand side of relation (13), we get

rN  4N⌧

min

1n<
<n0N

|!n − !n0 |

NX

n=1

|q1n|2 + |q1−n|2 + |q0n|2 + |q0−n|2

|Bn|2
1X

n=N+1

�
|B−n|2 + |Bn|2

�
. (21)
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We define mappings n 7−! (p, c) and n0 7−! (k, s) that associate the indices n 2 N and n0 2 N with the
pairs of indices (p, c) and (k, s). According to the introduced notation, we find

Bn = i'pc, !n = βpc, !n0
= βks,

where

βpc = ↵

 ✓
⇡p

l1

◆2
+

✓
⇡c

l2

◆2!
and βks = ↵

 ✓
⇡k

l1

◆2
+

✓
⇡s

l2

◆2!
.

Thus, relation (21) takes the form

rN  8N⌧

min

(p,c)6=(k,s)
p,c,k,sN

|βpc − βks|

NX

p,c=1

|q1n|2 + |q1−n|2 + |q0n|2 + |q0−n|2

|i'pc|2
1X

p,c=N+1

|i'pc|2. (22)

Let

q0n = 0, q0−n = 0, |q1n| = |q1−n| = O

✓
1

pγ
+

1

cγ

◆
.

In view of notation (4) for 'pc, we get the following representation from relation (22):

rN = O

0

BBBBB@

N⌧

min

(p,c)6=(k,s)
p,c,k,sN

����
↵⇡2

(l1l2)2
�
l21(c

2 − s2) + l22(p
2 − k2)

�����

NX

p,c=1

(cγ + pγ)2

(pc)2γ−2

1X

p,c=N+1

(pc)−2

1

CCCCCA
(23)

as N −! 1.

We estimate the expression

min

(p,c)6=(k,s)
p,c,k,sN

����
↵⇡2

(l1l2)2
�
l21(c

2 − s2) + l22(p
2 − k2)

����� .

Let χ =

✓
l2
l1

◆2

> 0,

1−N2  c2 − s2 = (c− s)(c+ s) = mq  N2 − 1,

1−N2  p2 − k2 = (p− k)(p+ k) = m0q0  N2 − 1.

Thus, we get

min

(p,c)6=(k,s)
p,c,k,sN

����
↵⇡2

(l1l2)2
�
l21(c

2 − s2) + l22(p
2 − k2)

����� =
↵⇡2

l22
min

|mq|N2−1
|m0q0|N2−1

|mq + χm0q0|.
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If χ is an irrational algebraic number with power n⇤ ≥ 2, then, by the Liouville theorem,

|mq + χm0q0| = |m0q0|
����χ+

mq

m0q0

���� >
C|m0q0|
|m0q0|n⇤ =

C

|m0q0|n⇤−1
,

where C is a positive constant that depends only on χ and can be expressed in the explicit form via the quantities
conjugate to χ.

If 1  c  N, 1  s  N, 1  p  N, and 1  k  N, then

inf

(m,m0)6=(0,0)
2q2N
2q02N

|mq + χm0q0| > inf

C

|m0q0|n⇤−1
=

C

sup |m0q0|n⇤−1
=

C

(2N(N − 1))

n⇤−1
.

Hence,

min

1(p,c)
(k,s)N

����
↵⇡2

(l1l2)2
�
l21(c

2 − s2) + l22(p
2 − k2)

����� =
↵⇡2

l22

C

(2N(N − 1))

n⇤−1
. (24)

Substituting (24) in (23), we obtain

rN = O

0

@⌧N(2N(N − 1))

n⇤−1
NX

p,c=1

(pc)2−2γ
(cγ + pγ)2

1X

p,c=N+1

(pc)−2

1

A. (25)

In (25), we perform the equivalent change

rN = O

0

@⌧N2n⇤−1
NX

p,c=1

(pc)2−2γ
(cγ + pγ)2

1X

p,c=N+1

(pc)−2

1

A. (26)

By applying the integral criterion of comparison to the sum in (26), we obtain

NX

p,c=1

(pc)2−2γ
(cγ + pγ)2 

NZ

0

p2−2γdp

N+1Z

1

c2dc

+ 2

NZ

0

p2−γdp

NZ

0

c2−γdc+

N+1Z

1

p2dp

NZ

0

c2−2γdc

=

2N6−2γ

(3− γ)2
+

2N3−2γ
�
(N + 1)

3 − 1

�

9− 6γ

for γ 6= 3 and γ 6= 3

2

. Moreover,

1X

p,c=N+1

(pc)−2 
1Z

N

dp

1Z

N

(pc)−2dc =

1Z

N

p−2dp

1Z

N

c−2dc =
1

N2
.
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Substituting the values of the integrals in (26), we find

rN = O

✓
⌧2N2n⇤−1N6−2γ

N2
(3− γ)2

+

⌧2N2n⇤−1N3−2γ
((N + 1)

3 − 1)

N2
(9− 6γ)

◆
.

In the last equality, we perform the equivalent transformations

rN = O

✓
⌧N2n⇤−1N6−2γ

N2
+

⌧N2n⇤−1N3−2γN3

N2

◆
,

rN = O
⇣
⌧N2n⇤−2γ+3

⌘
. (27)

The obtained representation is true for the values ⌧ = O(Nn⇤−1
) satisfying inequality (20). By using (27),

we get the values of γ for which rN −! 0 as N −! 1 :

γ >
3

2

n⇤
+ 1.

This inequality yields property (13) for sufficiently large N.

Hence, Theorem 1 is proved.

Corollary. Let the conditions of Theorem 1 be satisfied. Then q1 2 R(0).

3. Conclusions

The proof of the main result of the present paper contains the theoretical substantiation of the applicability of
the method of model analysis to the estimation of the reachable set of an infinite-dimensional system that describes
vibrations of rectangular Kirchhoff plates. The key assumption guaranteeing the smallness of the norm of solutions
of a subsystem with high-frequency modes in using the family of controls u = ûN (t) is the condition of Theorem 1
on the algebraic nature of the number χ = l22/l

2
1, where l1 and l2 are the sizes of the plate.

It is of interest to study the possibilities of weakening the conditions of Theorem 1 for the description of
approximate controllability of the Kirchhoff model.

The problem of existence of the limit functions for the constructed family of controls {ûN (t)} as N −! 1
is also of interest for the subsequent investigation of the problem of controllability in Hilbert spaces.
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