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We prove criteria for continuous and homeomorphic extension to the boundary of mappings
with finite distortion between domains on the Riemann surfaces by prime ends of Caratheodory.

1. Introduction. The theory of the boundary behavior in the prime ends for the mappings
with finite distortion has been developed in [11] for the plane domains and in [14] for the
spatial domains. The pointwise boundary behavior of the mappings with finite distortion
in regular domains on Riemann surfaces was recently studied by us in [26]. Moreover, the
problem was investigated in regular domains on the Riemann manifolds for n ≥ 3 as well
as in metric spaces, see e.g. [1] and [28]. It is necessary to mention also that the theory of
the boundary behavior of Sobolev’s mappings has significant applications to the boundary
value problems for the Beltrami equations and for analogs of the Laplace equation in ani-
sotropic and inhomogeneous media, see e.g. [2], [7]–[10], [12], [13], [19], [22], [24] and relevant
references therein. For basic definitions and notations, discussions and historic comments in
the mapping theory on the Riemann surfaces, see our previous papers [25]–[27].

2. Definition of the prime ends and preliminary remarks. First recall the necessary
definitions of some general notions. Given a topological space T , a path in T is a continuous
map γ : [a, b] → T. Given A,B, C ⊆ T, ∆(A,B,C) denotes the collection of all paths γ
joining A and B in C, i.e., γ(a) ∈ A, γ(b) ∈ B and γ(t) ∈ C for all t ∈ (a, b). In what follows,
|γ| denotes the locus of γ, i.e. the image γ([a, b]).

We act similarly to Caratheodory ([4]) under the definition of the prime ends of domains
on a Riemann surface S, see Chapter 9 in [5]. First of all, recall that a continuous mapping
σ : I → S, I = (0, 1), is called a Jordan arc in S if σ(t1) ̸= σ(t2) for t1 ̸= t2. We also use
the notations σ, σ and ∂σ for σ(I), σ(I) and σ(I) \ σ(I), correspondingly. A cross–cut of a
domain D ⊂ S is either a closed Jordan curve or a Jordan arc σ in the domain D with both
ends on ∂D splitting D.

A sequence σ1, . . . , σm, . . . of cross-cuts of D is called a chain in D if:

(i) σi ∩ σj = ∅ for every i ̸= j, i, j = 1, 2, . . .;
(ii) σm splits D into 2 domains one of which contains σm+1 and another one σm−1 for every

m > 1;
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(iii) δ(σm) → 0 as m→ ∞.

Here
δ(E) = sup

p1,p2∈S
δ(p1, p2)

denotes the diameter of a set E in S with respect to a metric δ in S agreed with its topology,
see [25]–[26].

Correspondingly to the definition, a chain of cross-cuts σm generates a sequence of do-
mains dm ⊂ D such that d1 ⊃ d2 ⊃ . . . ⊃ dm ⊃ . . . and D ∩ ∂ dm = σm. Two chains of
cross-cuts {σm} and {σ′

k} are called equivalent if, for every m = 1, 2, . . ., the domain dm
contains all domains d′k except a finite number and, for every k = 1, 2, . . ., the domain d′k
contains all domains dm except a finite number, too. A prime end P of the domain D is
an equivalence class of chains of cross-cuts of D that are not contracted to a point in D.
Later on, ED denote the collection of all prime ends of a domain D and DP = D ∪ED is its
completion by its prime ends.

Next, we say that a sequence of points pl ∈ D is convergent to a prime end P of D if, for
a chain of cross–cuts {σm} in P , for every m = 1, 2, . . ., the domain dm contains all points
pl except their finite collection. Further, we say that a sequence of prime ends Pl converge
to a prime end P if, for a chain of cross–cuts {σm} in P , for every m = 1, 2, . . ., the domain
dm contains chains of cross–cuts {σ′

k} in all prime ends Pl except their finite collection.
Now, let D be a domain in the compactification S of a Riemann surface S by Kerekjarto-

Stoilow, see a discussion in [25]–[26]. Open neighborhoods of points in D is induced by the
topology of S. A basis of neighborhoods of a prime end P of D can be defined in the following
way. Let d be an arbitrary domain from a chain in P . Denote by d∗ the union of d and all
prime ends of D having some chains in d. Just all such d∗ form a basis of open neighborhoods
of the prime end P . The corresponding topology on DP is called the topology of prime ends.

Let P be a prime end of D on a Riemann surface S, {σm} and {σ′
m} be two chains in P ,

dm and d′m be domains corresponding to σm and σ′
m. Then

∞∩
m=1

dm ⊆
∞∩

m=1

d′m ⊂
∞∩

m=1

dm,

and, thus,
∞∩

m=1

dm =
∞∩

m=1

d′m,

i.e. the set named by a body of the prime end P

I(P ) :=
∞∩

m=1

dm (1)

depends only on P but not on a choice of a chain of cross–cuts {σm} in P .
It is necessary to note also that, for any chain {σm} in the prime end P ,

Ω :=
∞∩

m=1

dm = ∅. (2)

Indeed, every point p in Ω belongs to D. Moreover, some open neighborhood of p in D should
belong to Ω. In the contrary case each neighborhood of p should have a point in some σm.
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However, in view of condition (iii) then p ∈ ∂D that should contradict the inclusion p ∈ D.
Thus, Ω is an open set and if Ω would be not empty, then the connectedness of D would be
broken because D = Ω ∪ Ω∗ with the open set Ω∗ := D \ I(P ).

In view of conditions (i) and (ii), we have by (2) that

I(P ) =
∞∩

m=1

(∂dm ∩ ∂D) = ∂D ∩
∞∩

m=1

∂dm.

Thus, we obtain the following statement.

Proposition 1. For each prime end P of a domain D on a Riemann surface,

I(P ) ⊆ ∂D. (3)

Remark 1. If D is a domain in S with ∂D ⊂ S, then I(P ) is a continuum, i.e. it is a
connected compact set, see e.g. I(9.12) in [31], see also I.9.3 in [3], and I(P ) belongs to only
one (connected) component Γ of ∂D. Hence we say that the component Γ is associated with
the prime end P .

Moreover, every prime end of D in the case contains a convergent chain {σm}, i.e., that
is contracted to a point p0 ∈ ∂D. Furthermore, each prime end P contains a spherical chain
{σm} lying on circles S(p0, rm) = {p ∈ S : δ(p, p0) = rm} with p0 ∈ ∂D and rm → 0 as
m→ ∞. The proof is perfectly similar to Lemma 1 in [14] after the replacement of metrics,
see also Theorem VI.7.1 in [21], and hence we omit it. Note by the way that the condition
(iii) does not depend in the case on the choice of the metric δ agreed with the topology of S
because ∂D has a compact neighborhood.

It is known that the conformal modulus M of the family of all paths joining a pair of the
opposite sides of a rectangle is equal to the ratio of lengths of other pair of opposite sides
and their own, see e.g. I.4.3 in [18]. This simple fact gives a series of useful consequences.

Corollary 1. Let S be the open sector of the ring A = {z ∈ C : r1 < |z − z0| < r2}, z0 ∈ C,
between the rays Rk = {z ∈ C : z = z0 + reiαk , r ∈ (0,∞)}, k = 1, 2, 0 ≤ α1 < α2 ≤ 2π.
Then

M(∆(R1, R2, S)) =
log r2

r1

α2 − α1

, M(∆(C1, C2, S)) =
α2 − α1

log r2
r1

(4)

where Ck are the boundary circles {z ∈ C : |z − z0| = rk}, k = 1, 2, of the ring A.

Indeed, the conclusion follows from the invariance of the modulus M under conformal
mappings because the sector S is mapped with the mapping log(z − z0) onto the rectangle
R = {ζ = ξ + iη ∈ C : log r1 < ξ < log r2, α1 < η < α2}.

Corollary 2. Under notations of Corollary 1 and α2 − α1 = ∆, the modulus of all Jordan
arcs joining the rays R1 and R2 in the sector S is greater or equal to the number 1

∆
log r2

r1
.

Indeed, every path γ : [a, b] → C in ∆(R1, R2, S) has a countable collection of loops
because its preimage (without the the corresponding point of cusp in C) is open in (a, b).
Thus, numbering its loops and removing them by induction, we come to a Jordan arc γ∗ in
∆(R1, R2, S) with its locus |γ∗| ⊆ |γ|.
3. Some general topological lemmas. The following statement is an analog of Proposition
2.3 in [23], see also Proposition 13.3 in [19].
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Proposition 2. Let T be a topological space. Suppose that E1 and E2 are sets in T with
E1 ∩ E2 = ∅. Then

∆(E1 , E2 , T ) > ∆( ∂E1 , ∂E2 , T \ (E1 ∪ E2) ). (5)

Proof. Indeed, let γ ∈ ∆(E1, E2, T ), i.e. the path γ : [a, b] → T is such that γ(a) ∈ E1 and
γ(b) ∈ E2. Note that the set α := γ−1(E1) is a closed subset of the segment [a, b] because γ
is continuous, see e.g. Theorem 1 in Section I.2.1 of [3]. Consequently, α is compact because
[a, b] is a compact space, see e.g. I.9.3 in [3]. Then there is

a∗ := max
t∈α

t < b

because γ(b) ∈ E2 and by the hypothesis of the proposition E1 ∩E2 = ∅. Thus, γ′ := γ|[a∗,b]
belongs to ∆(∂E1, E2, T \ E1) because γ is continuous and hence γ′(a∗) cannot be an inner
point of E1.

Arguing similarly in the space T ′ = T \E1 with E ′
1 := E2 and E ′

2 := ∂E1, we obtain that
there is

b∗ := min
γ′(t)∈E2

t > a∗.

Thus, by the given construction γ∗ := γ|[a∗,b∗] just belongs to ∆(∂E1, ∂E2, T \(E1∪E2)).

Lemma 1. In addition to the hypothesis of Proposition 2, let T be a subspace of a metric
space (M,ρ). Suppose that

∂E1 ⊆ C1 := {p ∈M : ρ(p, p0) = R1}, ∂E2 ⊆ C2 := {p ∈M : ρ(p, p0) = R2}

with p0 ∈M \ T and R1 < R2. Then

∆(E1 , E2 , T ) > ∆(C1 , C2 , A ) (6)

where A = A(p0, R1, R2) := {p ∈M : R1 < ρ(p, p0) < R2}.

Note that here, generally speaking, C1 ∩ T ̸= E1 and C2 ∩ T ̸= E2 as well as γ∗ in the
proof of Proposition 2 is not in R.

Proof. First of all, note that by the continuity of γ∗ the set ω := γ−1
∗ (R) is open in [a∗, b∗]

and ω is the union of a countable collection of disjoint intervals (a1, b1), (a2, b2), . . . with
ends in Γ := γ−1

∗ (∂R). If there is a pair ak and bk in the different sets Γi := γ−1
∗ (Ci), i = 1, 2,

Γ = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅, then the proof is complete.
Let us assume that such a pair is absent. Then the given collection is split into 2 collections

of disjoint intervals (a′l, b
′
l) and (a′′l , b

′′
l ) with ends a′l, b′l ∈ Γ1 and a′′l , b′′l ∈ Γ2, l = 1, 2, . . .. Set

α1 =
∪

l(a
′
l, b

′
l) and α2 =

∪
l(a

′′
l , b

′′
l ).

Arguing by contradiction, it is easy to show that γ∗ : [a∗, b∗] → (M,ρ) is uniformly
continuous because [a∗, b∗] is a compact space. Indeed, let us assume that there is ε > 0
and a sequence of pairs a∗n and b∗n ∈ [a∗, b∗], n = 1, 2, . . ., such that |b∗n − a∗n| → 0 as
n → ∞ and simultaneously ρ(γ∗(a∗n), γ∗(b∗n)) ≥ ε. However, by compactness of [a∗, b∗] there
is a subsequence a∗nk

→ a0 ∈ [a∗, b∗] and then also b∗nk
→ a0 as k → ∞. Hence by the

continuity of γ∗ it should be ρ(γ∗(a∗nk
), γ∗(a0)) → 0 as well as ρ(γ∗(b∗nk

), γ∗(a0)) → 0 and
then by the triangle inequality also ρ(γ∗(a

∗
nk
), γ∗(b

∗
nk
)) → 0 as k → ∞. The contradiction

disproves the assumption.
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Note that b′l − a′l → 0 as l → ∞ and by the uniform continuity of γ∗ on [a∗, b∗] we have
that |γ′l| → C1 in the sense that

sup
p∈|γ′

l |
inf
q∈C1

ρ(p, q) → 0 as l → ∞

where γ′l := γ∗|[a′l,b′l], l = 1, 2, . . .. Thus, there is R′
2 ∈ (R1, R2) such that the set L1 :=

∪
l |γ′l|

lies outside of B2 := {p ∈M : ρ(p, p0) > R′
2}.

Arguing similarly, we obtain that there is R′
1 ∈ (R1, R

′
2) such that the set L2 :=

∪
l |γ′′l |

lies outside of B1 := {p ∈M : ρ(p, p0) < R′
1}. Remark that the sets β1 := γ−1

∗ (B1) and β2 :=
γ−1
∗ (B2) are open in [a∗, b∗] because γ∗ is continuous and by the construction δ1 := α1∪β1 and
δ2 := α2 ∪ β2 are open, mutually disjoint and together cover the segment [a∗, b∗]. The latter
contradicts to connectedness of the segment and, thus, disproves the above assumption.

4. The main lemma.

Lemma 2. Let S be a Riemann surface, D be a domain in S with ∂D ⊂ S and let Γ be
an isolated component of ∂D. Then Γ has a neighborhood U with a conformal mapping H
of U∗ := U ∩D onto a ring R = {z ∈ C : 0 ≤ r < |z| < 1} where γ := ∂U∗ ∩D is a closed
Jordan curve,

C(γ,H) = {z ∈ C : |z| = 1}, C(Γ, H) = {z ∈ C : |z| = r}

and r = 0 if and only if Γ is degenerated to a point. Furthermore, the mapping H can be
extended to a homeomorphism H̃ of U∗

P onto R.

Here we use the notation of the cluster set of the mapping H for B ⊆ ∂D,

C(B,H) :=
{
z ∈ C : z = lim

k→∞
H(pk), pk → p ∈ B, pk ∈ D

}
.

Proof. By the Kerekjarto–Stoilow representation of S, Γ has an open neighborhood V in
S of a finite genus and we may assume that V is a compact subset of S, V is connected
and does not intersect ∂D \ Γ because Γ is an isolated component of ∂D. Thus, V ∩ D is
a Riemann surface of finite genus with an isolated boundary element g corresponding to Γ.
However, a Riemann surface of finite genus has boundary elements only of the first kind,
see, e.g., IV.II.6 in [29]. Consequently, Γ has a neighborhood U∗ from the side of D of genus
zero with a closed Jordan curve γ = ∂U∗ ∩D. The latter means that U∗ is homeomorphic
to a plane domain and, consequently, by the general principle of Koebe, see e.g. Section II.3
in [15], U∗ is conformally equivalent to a planar domain D∗. Note that by the construction
U∗ has two nondegenerate boundary components. Hence there is a conformal mapping H of
U∗ onto a ring D∗ = R = {z ∈ C : 0 ≤ r < |z| < 1} with C(γ,H) = C1 := {z ∈ C : |z| = 1}
and C(Γ, H) = Cr := {z ∈ C : |z| = r}, see e.g. Proposition 2.5 in [23] or Proposition 13.5
in [19]. Set U = U∗ ∪ (V \D).

If Γ is not degenerated into a point, then r ̸= 0. Indeed, in the contrary case the images of
the closed Jordan curves around the origin in the punctured disk Dε = {z ∈ C : 0 < |z| < ε}
under the mapping H−1 should be contracted to Γ as ε → 0 and hence their lengths are
not less than δ := diamΓ > 0 for small enough ε. However, the latter contradicts to the
conformal invariance of the modulus because by Corollary 2 the modulus of all such closed
Jordan curves is equal to ∞. Inversely, if Γ is degenerated into a point p0 ∈ S, then it is
obvious that r = 0 because p0 has arbitrarily small neighborhoods that are conformally
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mapped onto the unit disk in C. Hence we omit the consideration of this trivial case and
restrict ourselves by the case r > 0.

Now, by the condition (i) in the definition of prime ends and the invariance of M we
have, for every chain {σm} in a prime end P associated with Γ and localized in U∗, that

M(∆(σm, σm+1, U
∗)) <∞ ∀m = 1, 2, . . . (7)

Moreover, by Remark 1 P contains a chain {σm} lying on circles Sm = S(p0, rm) = {p ∈
S : δ(p, p0) = rm} with p0 ∈ ∂D and rm → 0 as m → ∞ for which and any continuum C
in U∗

lim
m→∞

M(∆(σm, C, U
∗)) ≤ lim

m→∞
M(∆(σm, σm0 , U

∗)) = 0. (8)

Indeed, for every continuum C in U∗, there is m0 such that C ⊂ D \ dm0 and the closed ball
B0 = B(p0, rm0) = {p ∈ S : δ(p, p0) ≤ rm0} is compact and lies in a chart U0 of p0. Then
∆(σm, C, U

∗) ⊆ ∆(σm, D \ dm0 , U
∗), by Proposition 2 ∆(σm, D \ dm0 , U

∗) > ∆(σm, σm0 , U
∗)

and by Lemma 1 ∆(σm, σm0 , U
∗) > ∆(Sm, Sm0 , A) where A := {p ∈ S : rm < δ(p, p0) < rm0}

belongs to the chart U0 of the point p0. Note, M(∆(Sm, Sm0 , A)) ≤M(∆(Sm, Sm0 , U0)) → 0
as m→ ∞ because Sm0 is a compact set in B0 \ {p0} and Sm is contracted to p0 as m→ ∞,
see also 7.5 in [30]. Finally, we obtain (8) by the minorization principle, see e.g. [6], p. 178.
Similarly, it is proved that prime ends associated with γ also satisfy conditions (7) and (8).

Thus, the prime ends of U∗ in the sense (i)–(iii) and their images in R are the prime ends
in the sense of Section 4 in [20]. By Lemma 3.5 in [20] the prime ends of Näkki in R coincide
with prime ends of Caratheodory. Moreover, the Näkki prime ends in R has a one-to-one
correspondence with the points of ∂R whose extension to the mapping between R and RP

by the identity in R is a homeomorphism with respect to the topologies of R and RP or
with respect to convergence of points and prime ends, respectively, see Theorems 4.1 and 4.2
in [20]. Consequently, if pk is a sequence of points in U∗ which is convergent to a prime end
P of U∗, then H(pk) is convergent to a unique point z0 ∈ ∂R that depends only on P .

Denote by H̃ the extension of H to U∗
P . It is clear by definitions of prime ends of Näkki

and Caratheodory as classes of equivalence that H̃(P1) ̸= H̃(P2) for every prime ends P1 ̸= P2

of the domain U∗. Let us consider the metric ρ(P, P ∗) := |H̃(P )− H̃(P ∗)| on the space U∗
P .

It is obvious by definitions that ρ(Pk, P0) → 0 implies that Pk → P0 as k → ∞. The inverse
conclusion follows because of the mapping H̃ : U∗

P → R is continuous. Indeed, let Pk → P0,
k = 1, 2, . . ., be a sequence in U∗

P . It is obvious, H̃(Pk) → H̃(P0) for P0 ∈ U∗. If P0 ∈ EU∗ ,
then we are able to choose pk ∈ U∗ such that |H̃(Pk) − H̃(pk)| < 2−k, k = 1, 2, . . ., and
pk → P0 as k → ∞. The latter implies that H̃(pk) → H̃(P0) and then the former implies
that H̃(Pk) → H̃(P0). Thus, the space U∗

P is metrizable with the given metric ρ and H̃ is
an isometric embedding of U∗

P in R. By construction H̃(U∗) = R and, by Proposition 2.5
in [23] or Proposition 13.5 in [19], H̃(EU∗) ⊆ ∂R. Let us show that H̃(EU∗) = ∂R.

For this goal, fixing z0 ∈ ∂Cr and ε ∈ (0, 1), consider the family F of all Jordan arcs in
the open disk Bε = B(z0, ε) := {z ∈ C : |z − z0| < ε} joining in R the two open arcs A1

and A2 of Cr ∩ Bε \ {z0}. By the minorization principle, see e.g. [6], and the invariance of
M (with respect to the conformal mapping consisting of the composition of the inversion
with respect to the unit circle and the reflection with respect to the straight line L0 passing
through the origin and the point z0) we obtain from Corollary 2 that the conformal modulus
of the family F is equal to ∞. By the invariance of the modulus under conformal mappings
we have that the modulus of the family F∗ = H−1(F) is also equal to ∞. Consequently, the
length of elements of F∗ cannot be restricted from below and, by arbitrariness of ε, there is
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a sequence of mutually disjoint cross-cuts σm ∈ F of R with σm(0) ∈ A1 and σm(1) ∈ A2

that is contracted to the point z0 such that δ(σ∗
m) → 0 as m → ∞ where σ∗

m = H−1(σm)
and, moreover, σ∗

m+1 ⊂ d∗m where d∗m is the corresponding component of D generated by
σ∗
m, ∂d∗m ∩ U∗ = σ∗

m for all m = 1, 2, . . .. Note that such rectifiable σ∗
m : (0, 1) → D have

limits p(1)m = lim
t→+0

σ∗
m(t) and p

(2)
m = lim

t→1−0
σ∗
m(t) because U∗ is a compact subset of S, see

e.g. Proposition I.9.3 in [3], cf. also Theorem 1.3.2 in [30], moreover, the points p(1)m and p(2)m

belongs to Γ, see e.g. Proposition 2.5 in [23] or Proposition 13.5 in [19].
Finally, it remains to show that σ∗

m ∩ σ∗
m+1 = ∅, passing in case of need to a suitable

subchain of cross–cuts σm in R. First of all, by the above construction we may assume that

δm := inf
z∈σm

|z − z0| > δ∗m := sup
z∈σm+1

|z − z0| > 0 ∀m = 1, 2, . . .

and also that σ∗
m is contracted to a point p0 ∈ Γ because Γ is compact and δ(σ∗

m) → 0. It is
clear that the desired subchain exists if σ∗

m(0) ̸= p0 ̸= σ∗
m(1) for all large enough m.

In the contrary case, it would exist a subchain σ̃k := σmk
, k = 1, 2, . . ., such that either

σ̃∗
k(0) = p0 = σ̃∗

k+1(0) or σ̃∗
k(1) = p0 = σ̃∗

k+1(1) for all k = 1, 2, . . ., where σ̃∗
k := H−1(σ̃k),

k = 1, 2, . . .. In the first case, consider the ring A = {z ∈ C : r1 < |z − z0| < r2} with
0 < δ∗mk

< r1 < r2 < δmk
. As above, by the minorization principle, the invariance of M and

Corollary 1 the conformal modulus of the family F̃ of all paths in A∩R joining the open arc
A0 := A ∩A1 of the circle Cr and the interval I0 := A ∩ L0 of the straight line L0 is not less
than 2

π
log r2

r1
> 0. The modulus of the family F̃∗ = H−1(F̃) should be the same. However,

the modulus of F̃∗ is equal to zero because all paths in F̃∗ are ended at the point p0.
Indeed, denote by I the maximal open interval of L0 containing I0 and not intersecting σ̃k

and σ̃k+1, and by t0 and t∗ the parameter numbers in (0, 1) corresponding to its ends on σ̃k
and σ̃k+1. Then H−1(I), σ̃∗

k((0, t0]), σ̃∗
k+1((0, t∗]) and the point p0 form a closed Jordan curve

in U∗ with the only point on ∂U∗. Note that the corresponding Jordan domain contains the
family F̃∗ of paths γ that should be ended on Γ and, consequently, at the point p0. The
second possibility is similarly disproved.

Thus, H̃ is isometry between U∗
P with the given metric ρ and R.

Remark 2. By the proof we have that U∗
P is a compact space with the metric ρ. Moreover,

it follows from the proof that the spaces of prime ends by Caratheodory and Näkki coincide
not only in the ring R but also in U∗ because the Näkki prime ends are invariant under
conformal mappings.

Furthermore, ifD be a domain in the Kerekjarto-Stoilow compactification S of a Riemann
surface S and ∂D is a set in S with a finite collection of components, then their prime ends
by Caratheodory and Näkki also coincide, the whole space DP can be metrized through the
theory of pseudometric spaces, see e.g. Section 2.21.XV in [16], and DP is compact.

Namely, let ρ0 be one of the metrics on S and let ρ1, . . . , ρn be the above metrics on
U∗
1 P , . . . , U

∗
nP for the corresponding components Γ1, . . . ,Γn of ∂D. Here we may assume that

the sets U∗
j are mutually disjoint. Then ρ∗j := ρj/(1+ρj) ≤ 1, j = 0, 1, . . . , n, are also metrics

generating the same topologies on D0 := D \ ∪U∗
j , U∗

1 P , . . . , U
∗
nP , correspondingly, see e.g.

Section 2.21.V in [16], and the topology of prime ends on DP is generated by the metric

ρ =
n∑

j=0

2−(j+1)ρ̃j < 1
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where the pseudometrics ρ̃j are extensions of ρ∗j onto DP by 1, see e.g. Remark 2 in point
2.21.XV of [16]. Note that the space DP is compact because DP =

∪
U∗
j P

∪D0 where D0 is
a compact space as a closed subset of the compact space S, see e.g. Proposition I.9.3 in [3].

Corollary 3. Under hypothesis of Lemma 2, the space of all prime ends associated with a
nondegenerate isolated component of ∂D is homeomorphic to a circle.

5. On boundary behavior in prime ends of inverse maps. The main base for extending
inverse mappings is the following fact.

Lemma 3. Let S and S′ be Riemann surfaces, D and D′ be domains in S and S′, ∂D ⊂ S
and ∂D′ ⊂ S′ have finite collections of components, and let f : D → D∗ be a homeomorphism
of finite distortion with Kf ∈ L1

loc. Then

C(P1, f) ∩ C(P2, f) = ∅ (9)

for all prime ends P1 ̸= P2 in the domain D.

Here we use the notation of the cluster set of the mapping f at P ∈ ED,

C(P, f) :=
{
P ′ ∈ ED′ : P ′ = lim

k→∞
f(pk), pk → P, pk ∈ D

}
As usual, we also assume here that the dilatation Kf of the mapping f is extended by

zero outside of the domain D.

Proof. First of all note that S and S′ are metrizable spaces. Hence their compactness is equi-
valent to their sequential compactness, see e.g. Remark 41.I.3 in [17], and D, D′, ∂D and
∂D′ are compact subsets of S and S′, correspondingly, see e.g. Proposition I.9.3 in [3]. Thus,
by Lemma 2, Remarks 1 and 2, we may assume that P1 and P2 are associated with the same
nondegenerate component Γ of ∂D, Kf ∈ L1(D), D′ is a ring R = {z ∈ C : 0 ≤ r < |z| < 1}
and Ak := C(Pk, f), k = 1, 2 are sets of points in the circle Cr := {z ∈ C : |z| = r}, ∂D
consists of 2 components: Γ and a closed Jordan curve γ, f is extended to a homeomorphism
of D∪γ onto D′∪C1, C(Cr, f

−1) = Γ, see Proposition 2.5 in [23] or Proposition 13.5 in [19].
Note that the sets Ak are continua, i.e. closed arcs of the circle Cr, because

Ak =
∞∩

m=1

f
(
d
(k)
m

)
, k = 1, 2,

where d(k)m are domains corresponding to chains of cross–cuts {σ(k)
m } in the prime ends Pk,

k = 1, 2, see e.g. I(9.12) in [31] and also I.9.3 in [3]. In addition, by Remark 1 we may assume
also that σ(k)

m are open arcs of the circles C(k)
m := {p ∈ S : h(p, pk) = r

(k)
m } on S with pk ∈ ∂D

and r(k)m → 0 as m→ ∞, k = 1, 2.
Set p0 = p1. By the definition of the topology of the prime ends in the space DP ,

we have that d(1)m ∩ d
(2)
m = ∅ for all large enough m because P1 ̸= P2. For such m, set

R1 = r
(1)
m+1 < R2 = r

(1)
m and

Uk = d(k)m , Σk = σ(k)
m , Ck = {p ∈ S : h(p, p0) = Rk}, k = 1, 2.
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Let K1 and K2 be arbitrary continua in U1 and U2, correspondingly. Applying Proposition 2
and Lemma 1 with T = D, E1 = d

(1)
m+1 and E2 = D \ d(1)m , and taking into account the

inclusion ∆(K1, K2, D) ⊂ ∆(E1, E2, D), we obtain that

∆(K1, K2, D) > ∆(C1, C2, A), A := {p ∈ S : R1 < h(p, p0) < R2}, (10)

which means that any path α : [a, b] → S joining K1 and K2 in D, α(a) ∈ K1, α(b) ∈ K2 and
α(t) ∈ D, t ∈ (a, b), has a subpath joining C1 and C2 in A. Thus, since f is a homeomorphism,
we have also that

∆(fK1, fK2, fD) > ∆(fC1, fC2, fA) (11)

and by the minorization principle, see e.g. [6], p. 178, we obtain that

M(∆(fK1, fK2, fD)) ≤M(∆(fC1, fC2, fA)). (12)

So, by Lemma 3.1 in [26] we conclude that

M(∆(fK1, fK2, fD)) 6
∫
A

Kf (p) · ξ2(h(p, p0))dh(p) (13)

for all measurable functions ξ : (R1, R2) → [0,∞] such that

R2∫
R1

ξ(R)dR > 1. (14)

In particular, for ξ(R) ≡ 1/δ, δ = R2 −R1 > 0, we get from here that

M(∆(fK1, fK2, fD)) 6M0 :=
1

δ

∫
D

Kf (p)dh(p) <∞. (15)

Since f is a homeomorphism, (15) means that

M(∆(K1,K2, D
′)) 6M0 <∞ (16)

for all continua K1 and K2 in the domains V1 = fU1 and V2 = fU2, correspondingly.
Let us assume that A1 ∩A2 ̸= ∅. Then by the construction there is p0 ∈ ∂R∩ ∂V1 ∩ ∂V2.

However, the latter contradicts (16) because the ring D′ = R is a QED (quasiextremal
distance) domains, see e.g. Theorem 3.2 in [19], see also Theorem 10.12 in [30].

Theorem 1. Let S and S′ be Riemann surfaces, D and D′ be domains in S and S′,
correspondingly, ∂D ⊂ S and ∂D′ ⊂ S′ have finite collections of components, and let
f : D → D′ be a homeomorphism of finite distortion with Kf ∈ L1

loc. Then the inverse
mapping g = f−1 : D′ → D can be extended to a continuous mapping g̃ of D′

P onto DP .

Proof. Recall that by Remark 2 the spaces DP and D′
P are compact and metrizable with

metrics ρ and ρ′. Let a sequence pn ∈ D′ converge as n→ ∞ to a prime end P ′ ∈ ED′ . Then
any subsequence of p∗n := g(pn) has a convergent subsequence by compactness of DP . By
Lemma 3 any such convergent subsequence should have the same limit. Thus, the sequence
{p∗n} is convergent in DP , see e.g. Theorem 2 of Section 2.20.II in [16]. Similarly, by Lemma 3
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the sequence p̃∗n := g(p̃n) has the same limit for any other sequence p̃n ∈ D′ as n → ∞.
Consequently, g generates the natural mapping g̃ : D′

P → DP .
Note that {p∗n} cannot converge to an inner point of D because I(P ′) ⊆ ∂D′ by Proposi-

tion 1 and, consequently, the cluster set of p∗n belongs to ∂D, see e.g. Proposition 2.5 in [23]
or Proposition 13.5 in [19]. Thus, ED′ is mapped into ED under this extension g̃ of g. In fact,
g̃ maps ED′ onto ED because pn = f(p∗n) has a convergent subsequence for every sequence
p∗n ∈ D that is convergent to a prime end P of the domain D because D′

P is compact.
The map g̃ is continuous. Indeed, let a sequence P ′

n ∈ D′
P be convergent to P ′ ∈ D′

P .
Then by the first item there is a sequence pn ∈ D′ with ρ′(P ′

n, pn) < 2−n and ρ(p∗n, P ∗
n) < 2−n

where p∗n := g(pn) and P ∗
n := g̃(Pn). Then pn → P ′ and, by the first item, p∗n → P ∗ as well

as P ∗
n → P ∗ as n→ ∞ where P ∗ = g̃(P ′).

Corollary 4. Under the hypothesis of Lemma 3, if Γ is a nondegenerate component of ∂D,
then C(Γ, f) is a nondegenerate component of ∂D′.

6. Lemma on extension to boundary of direct mappings. In contrast with the case of
the inverse mappings, as it was already established in the plane, no degree of integrability of
the dilatation leads to the extension to the boundary of direct mappings with finite distortion,
see the example in the proof of Proposition 6.3 in [19]. The nature of the corresponding
conditions has a much more refined character as the following lemma demonstrates.

Lemma 4. Under the hypothesis of Theorem 1, let in addition∫
R(p0,ε,ε0)

Kf (p) · ψ2
p0,ε,ε0

(h(p, p0))dh(p) = o
(
I2p0,ε0(ε)

)
∀p0 ∈ ∂D (17)

as ε → 0 for all ε0 < δ(p0) where R(p0, ε, ε0) = {p ∈ S : ε < h(p, p0) < ε0} and ψp0,ε,ε0(t) :
(0,∞) → [0,∞], ε ∈ (0, ε0), is a family of measurable functions such that

0 < Ip0,ε0(ε) :=

ε0∫
ε

ψp0,ε,ε0(t)dt <∞ ∀ε ∈ (0, ε0).

Then f can be extended to a continuous mapping f̃ of DP onto D′
P .

We assume here as above that the function Kf is extended by zero outside of D.

Proof. By Lemma 2, Remarks 1 and 2, arguing as in the beginning of the proof of Lemma 3,
we may assume with no loss of generality that D is a compact set in S, ∂D consists of 2
components: a closed Jordan curve γ and one more nondegenerate component Γ, D′ is a ring
R = {z ∈ C : 0 < r < |z| < 1}, D′

P = R,

C(Γ, f) = Cr := {z ∈ C : |z| = r}, C(γ, f) = C1 := {z ∈ C : |z| = 1}

and that f is extended to a homeomorphism of D ∪ γ onto D′ ∪ C1.
Let us first prove that the set L := C(P, f) consists of a single point of Cr for a prime

end P of the domain D associated with Γ. Note that L ̸= ∅ by compactness of the set R
and, moreover, L ⊆ Cr by Proposition 1.

Let us assume that there is at least two points ζ0 and ζ∗ ∈ L. Set U = {ζ ∈ C : |ζ − ζ0| <
ρ0} where 0 < ρ0 < |ζ∗ − ζ0|.
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Let σk, k = 1, 2, . . . , be a chain in the prime end P from Remark 1 lying on the circles
Sk := {p ∈ S : h(p, p0) = rk} where p0 ∈ Γ and rk → 0 as k → ∞. Let dk be the domains
associated with σk. Then there exist points ζk and ζ∗k in the domains d′k = f(dk) ⊂ R such
that |ζ0 − ζk| < ρ0 and |ζ0 − ζ∗k | > ρ0 and, moreover, ζk → ζ0 and ζ∗k → ζ∗ as k → ∞. Let γk
be paths joining ζk and ζ∗k in d′k. Note that by the construction ∂U ∩ γk ̸= ∅, k = 1, 2, . . ..

By the condition of strong accessibility of the point ζ0 in the ring R, there is a continuum
E ⊂ R and a number δ > 0 such that

M(∆(E, γk;R)) > δ (18)

for all large enough k. Note that C = f−1(E) is a compact subset of D and hence

h(p0, C)) > 0.

Let ε0 ∈ (0, δ0) where δ0 := min (δ(p0), h(p0, C)). Without loss of generality, we may assume
that rk < ε0 and that (18) holds for all k = 1, 2, . . ..

Let Γm be the family of paths joining the circle S0 := {p ∈ S : h(p, p0) = ε0} and σm,
m = 1, 2, . . ., in the intersection of D \ dm and the ring Rm := {p ∈ S : rm < h(p, p0) < ε0}.
Applying Proposition 2 and Lemma 1 with T = D, E1 = dm and E2 = B0 := {p ∈
S : h(p, p0) > ε0}, and taking into account the inclusion ∆(C,Ck, D) ⊂ ∆(E1, E2, D) =
∆(B0, dm, D) where Ck = f−1(γk), we have that ∆(C,Ck, D) > Γm for all k > m because
by the construction Ck ⊂ dk ⊂ dm. Thus, since f is a homeomorphism, we have also that
∆(E, γk, D) > fΓm for all k > m, and by the principle of minorization, see e.g. [6], p. 178,
we obtain that M(f(Γm)) > δ for all m = 1, 2, . . ..

On the other hand, every function ξ(t) = ξm(t) := ψp0,rm,ε0(t)/Ip0,ε0(rm), m = 1, 2, . . .,
satisfies the condition (14) and by Lemma 3.1 in [26]

M(fΓm) 6
∫
Rm

Kf (p) · ξ2m(h(p, p0))dh(p),

i.e., M(fΓm) → 0 as m→ ∞ in view of (17).
The obtained contradiction disproves the assumption that the cluster set C(P, f) consists

of more than one point.
Thus, we have the extension f̃ of f to DP such that f̃(ED) ⊆ ED′ . In fact, f̃(ED) = ED′ .

Indeed, if ζ0 ∈ D′, then there is a sequence ζn in D′ that is convergent to ζ0. We may assume
with no loss of generality that f−1(ζn) → P0 ∈ DP because DP is compact, see Remark 2.
Hence ζ0 ∈ ED because ζ0 /∈ D, see e.g. Proposition 2.5 in [23] or Proposition 13.5 in [19].

Finally, let us show that the extended mapping f̃ : DP → D′
P is continuous. Indeed, let

Pn → P0 in DP . The statement is obvious for P0 ∈ D. If P0 ∈ ED, then by the last item we
are able to choose P ∗

n ∈ D such that ρ(Pn, P
∗
n) < 2−n and ρ′(f̃(Pn), f̃(P

∗
n)) < 2−n where ρ

and ρ′ are some metrics on DP and D′
P , correspondingly, see Remark 2. Note that by the

first part of the proof f(P ∗
n) → f(P0) because P ∗

n → P0. Consequently, f̃(Pn) → f̃(P0).

7. On the homeomorphic extension to the boundary. Combining Lemma 4 and
Theorem 1, we obtain the following significant conclusion.

Theorem 2. Under the hypothesis of Lemma 4, the homeomorphism f : D → D′ can be
extended to a homeomorphism f̃ : DP → D′

P .
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Proof. Indeed, by Lemma 3 the mapping f̃ : DP → D′
P from Lemma 4 is injective and

hence it has the well defined inverse mapping f̃−1 : D′
P → DP and the latter coincides with

the mapping g̃ : D′
P → DP from Theorem 1 because a limit under a metric convergence

is unique. The continuity of the mappings g̃ and f̃ follows from Theorem 1 and Lemma 4,
respectively.

Remark 3. Note that condition (17) holds, in particular, if∫
D(p0,ε0)

Kf (p) · ψ2(h(p, p0))dh(p) <∞ ∀p0 ∈ ∂D (19)

where D(p0, ε0) = {p ∈ S : h(p, p0) < ε0} and where ψ(t) : (0,∞) → [0,∞] is a locally
integrable function such that Ip0,ε0(ε) → ∞ as ε → 0. In other words, for the extendability
of f to a homeomorphism of DP onto D′

P , it suffices for the integrals in (19) to be convergent
for an arbitrary nonnegative function ψ(t) that is locally integrable on (0,∞) but that has
a non-integrable singularity at zero.

Thus, Theorem 2 will have a great number of interesting corollaries for the theory of the
boundary behavior of the Sobolev mappings on the Riemann surfaces that will be published
elsewhere.
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