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Abstract. The criteria for continuous and homeomorphic extensions to the boundary of mappings with
finite distortion between domains on the Riemann surfaces by prime ends by Carathéodory are proved.
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1. Introduction

The theory of the boundary behavior in the prime ends for the mappings with finite distortion
has been developed in [12] for the plane domains and in [15] for the spatial domains. The pointwise
boundary behavior of the mappings with finite distortion in regular domains on Riemann surfaces was
recently studied by us in [30] and [31]. Moreover, the problem was investigated for regular domains
on the Riemann manifolds for n ≥ 3, as well as in metric spaces, see, e.g., [1] and [34]. It is necessary
to mention also that the theory of the boundary behavior of Sobolev’s mappings has significant ap-
plications to the boundary-value problems for the Beltrami equations and for analogs of the Laplace
equation in anisotropic and inhomogeneous media, see, e.g., [3, 8, 10, 11, 13, 14, 20, 23, 26] and relevant
references therein.

For the basic definitions, notations, discussions, and historic comments in the mapping theory on
the Riemann surfaces, see our previous papers [29–32].

2. Definition of the prime ends and preliminary remarks

We act similarly to Carathéodory [5] for the definition of the prime ends of domains on a Riemann
surface S, see Chapter 9 in [6]. First of all, we recall that a continuous mapping σ : I → S, I = (0, 1),
is called a Jordan arc in S, if σ(t1) ̸= σ(t2) for t1 ̸= t2. We also use the notations σ, σ, and ∂σ for
σ(I), σ(I), and σ(I) \ σ(I), correspondingly. A Jordan arc σ in a domain D ⊂ S is called a cross-cut
of the domain D, if σ splits D, i.e., D \ σ has more than one (connected) component, ∂σ ⊆ ∂D, and
σ is a compact set in S.

A sequence σ1, . . . , σm, . . . of cross-cuts of D is called a chain in D, if
(i) σi ∩ σj = ∅ for each i ̸= j, i, j = 1, 2, . . .;
(ii) σm splits D into 2 domains, one of which contains σm+1, and another one σm−1 for each m > 1;
(iii) δ(σm) → 0 as m→ ∞.
Here, δ(E) = sup

p1,p2∈S
δ(p1, p2) denotes the diameter of a set E in S with respect to an arbitrary

metric δ in S agreed with its topology, see [29–31].
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By definition, a chain of cross-cuts σm generates a sequence of domains dm ⊂ D such that d1 ⊃ d2 ⊃
. . . ⊃ dm ⊃ . . . and D ∩ ∂ dm = σm. Two chains of cross-cuts {σm} and {σ′k} are called equivalent,
if, for each m = 1, 2, . . ., the domain dm contains all domains d′k, except for a finite number, and, for
each k = 1, 2, . . ., the domain d′k contains all domains dm, except for a finite number, too. A prime
end P of the domain D is an equivalence class of chains of cross-cuts of D. Below, ED stands for the
collection of all prime ends of a domain D, and DP = D ∪ED is its completion by prime ends.

Next, we say that a sequence of points pl ∈ D is convergent to a prime end P of D, if, for a
chain of cross-cuts {σm} in P , for each m = 1, 2, . . ., the domain dm contains all points pl, except for
their finite collection. Further, we say that a sequence of prime ends Pl converges to a prime end P, if,
for a chain of cross-cuts {σm} in P , for each m = 1, 2, . . ., the domain dm contains chains of cross-cuts
{σ′k} in all prime ends Pl, except for their finite collection.

Now, let D be a domain in the compactification S of a Riemann surface S by Kerekjarto–Stoilow,
see a discussion in [29–31]. Open neighborhoods of points in D are induced by the topology of S. A
basis of neighborhoods of a prime end P of D can be defined in the following way. Let d be an arbitrary
domain from a chain in P . Denote by d∗ the union of d and all prime ends of D having some chains
in d. Just all such d∗ form a basis of open neighborhoods of the prime end P . The corresponding
topology on DP is called the topology of prime ends.

Let P be a prime end of D on a Riemann surface S, let {σm} and {σ′m} be two chains in P , and
let dm and d′m be the domains corresponding to σm and σ′m. Then

∞∩
m=1

dm ⊆
∞∩

m=1

d′m ⊂
∞∩

m=1

dm ,

and, thus,
∞∩

m=1

dm =
∞∩

m=1

d′m ,

i.e. the set named by a body of the prime end P,

I(P ) :=
∞∩

m=1

dm, (2.1)

depends only on P, but not on the choice of a chain of cross-cuts {σm} in P .
It is necessary to note also that, for any chain {σm} in the prime end P ,

Ω :=
∞∩

m=1

dm = ∅ . (2.2)

Indeed, every point p in Ω belongs to D. Moreover, some open neighborhood of p in D should belong
to Ω. In the contrary case, each neighborhood of p should have a point in some σm. However, in view
of condition (iii), then p ∈ ∂D that should contradict the inclusion p ∈ D. Thus, Ω is an open set and
if Ω would be not empty, then the connectedness of D would be broken, because D = Ω∪Ω∗ with the
open set Ω∗ := D \ I(P ).

In view of conditions (i) and (ii), we have by (2.2) that

I(P ) =

∞∩
m=1

(∂dm ∩ ∂D) = ∂D ∩
∞∩

m=1

∂dm .

Thus, we obtain the following statement.
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