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half-line with the Robin boundary condition. On the other hand, in the case of
general initial data, no results are known.

Our paper can be viewed as an important step in solving the above-mentioned
nonlinear problem with general initial data. We treat this system by the uni-
fied approach to IBV problems for linear and integrable nonlinear equations,
also known as the Fokas unified transform method. Following the ideas of this
method, we obtain the integral representation of the solution of the initial value
problem, which can be efficiently used in the analysis of the nonlinear problem.

On the mappings in the class W 1,1
loc on Riemann

surfaces
Sergei Volkov, Sloviansk, Ukraine

Vladimir Ryazanov, Sloviansk, Ukraine

In terms of dilatations Kf , it is proved a series of criteria for homeomorphic
extension to the boundary of mappings f with finite distortion between regular
domains on the Riemann surfaces, see for definitions [1] and [2]. For example:

Theorem 1. Let S and S∗ be Riemann surfaces, D and D∗ be domains in S
and S∗, correspondingly, ∂D ⊂ S and ∂D∗ ⊂ S∗, D be locally connected on the
boundary, and ∂D∗ be weakly flat, and let f : D → D∗ be a homeomorphism
of finite distortion with Kf ∈ L1

loc. Suppose that, for every point p0 ∈ ∂D with
the local coordinate z0 in some chart U of the surface S,∫ δ

0

dr

‖Kf‖(z0, r)
=∞

for all small enough δ > 0 where

‖Kf‖(z0, r) =

∫
|z−z0|=r

Kf(z) |dz|.

Then the mapping f is extended to the homeomorphism of D onto D∗.

Here we assume that Kf is extended by zero outside of the domain D.

Corollary 1. In particular, the conclusion of Theorem holds if for every point
p0 ∈ ∂D with the local coordinate z0 in a chart U of the surface S,

Kf(z) = O

(
log

1

|z − z0|

)
as z → z0
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or, more generally,

kz0(ε) = O

(
log

1

ε

)
as ε→ 0

where kz0(ε) is the mean value of the function Kf over the circle |z − z0| = ε.
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On the Neumann problem for A−harmonic functions
Artem Yefimushkin, Sloviansk, Ukraine

PDE’s in the divergence form below take a significant part in many problems of
mathematical physics in anisotropic and inhomogeneous media. Given a domain
D in C and a real (2 × 2)−matrix function A in D, a continuous function
u : D → R is called A−harmonic function if u is a generalized solution of the
equation div(A∇u) = 0. The matrix function A(z) is called of class B if A(z)
is measurable in z, symmetric, detA(z) ≡ 1 and the given equation is uniformly
elliptic. The following result was recently proved in [1].

Theorem 1. LetD be a smooth Jordan domain in C whose unit interior normal
n = n(ζ) at ζ ∈ ∂D is of bounded variation, A(z), z ∈ D, be a matrix function
of class B ∩ Cα, α ∈ (0, 1), and let a function ϕ : ∂D → R be measurable
with respect to logarithmic capacity. Then there exist A-harmonic functions
u : D → R of the class C1+α such that, for a.e. point ζ ∈ ∂D with respect to
the logarithmic capacity, there exist:

1) the finite normal limit

u(ζ) := lim
z→ζ

u(z) ,

2) the normal derivative

∂u

∂n
(ζ) := lim

t→0

u(ζ + t · n)− u(ζ)

t
= ϕ(ζ),

3) the nontangent limit

lim
z→ζ

∂u

∂n
(z) =

∂u

∂n
(ζ).


