Тема 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ МЕТРОЛОГИИ

- 1. Сущность и задачи метрологии
- 2. Основные термины и их определения
- 3. Международная система единиц физических величин (ФВ)
- 4. Эталоны единиц ФВ. Поверочные схемы

1. Сущность и задачи метрологии

Mempoлогия (с греч. metron — мера и logos - учение) — это наука об измерениях, которая изучает теоретические и практические аспекты измерений как способа познания во всех отраслях науки и техники.

Целью метрологии является создание общей теории измерений, эталонов и мер, измерительных приборов и измерительных информационных систем, разработка методов измерительных преобразований, методов оценки точности результатов измерений, методики передачи размеров единиц от эталонов к рабочим средствам измерений.

Метрология имеет собственный предмет и объект изучения.

Предметом метрологии являются методы и методики проведения измерительных операций, средства измерительной техники и способы достижения необходимой точности измерения свойств физических объектов и процессов, правила и нормы, способствующие этому.

Объектом современной метрологии является совокупность метрологического обеспечения всех отраслей производства, потребления и обслуживания общества, его элементов (промышленности, сельского хозяйства, охраны окружающей среды, науки, коммунальной сферы, транспорта и т.д.).

Субъектами метрологии являются лица или организации, которые осуществляют управленческую деятельность в отношении объектов и предметов метрологии.

Метрология выполняет такие функции:

1) научно-техническую функцию: решение научных и технических задач, призванных обеспечить создание современных средств и методик измерений, оценку их точности;

2) теоретическую функцию:

- разработка и совершенствование теоретических основ метрологии;
- разработка новых принципов и методик измерений;
- **р**азработка и совершенствование нормативной документации в области измерительной техники (стандарты, технические условия, инструкции и методические указания);
- создание и усовершенствование научных основ государственной службы стандартных справочных данных и стандартных образцов (разработка методик экспериментального определения самых достоверных значений физических констант;
- \triangleright создание и совершенствование научных основ государственной службы аттестации качества продукции, в том числе критериев оценки качества продукции.

Этими проблемами занимается отрасль метрологии – теоретическая метрология.

3) *законодательная функция* метрологии: разработка законодательных актов, правил, требований и норм, которые регламентируют все параметры осуществления измерений.

Задачи законодательной метрологии:

- узаконивание (стандартизация) терминов и их определений, системы или совокупности единиц, системы эталонов, мер физических величин и средств измерений;
- узаконивание классов точности средств измерительной техники и методик оценки их точности;

- узаконивание стандартных справочных данных, методик поверки и контроля измерительных средств, методик контроля и аттестации качества продукции (аттестация официальное подтверждение признанным компетентным органом соответствия определенных характеристик продукции установленным квалификационным признакам).
- 4) прикладную функцию: передача правильных значений единиц от эталонов к рабочим СИТ и мерам, метрологический контроль (метрологическая аттестация СИТ, аккредитация измерительных лабораторий, метрологическая экспертиза документации и отчетов о научно-исследовательских работах, аттестация методик измерений, метрологический надзор за обеспечением единства измерений).

Задачи прикладной метрологии:

- организация государственной службы единства мер и измерений, в том числе организация и осуществление периодической поверки средств измерительной техники, которые находяться в эксплуатации, организация и осуществление государственных испытаний нових средств измерительной техники, контроль за состоянием измерительного хозяйства предприятий;
- организация государственной службы стандартных справочных данных и стандартных образцов, в том числе издание официальных справочников со значениями констант и свойств веществ и материалов, изготовление и выпуск стандартных образцов и организация службы их аттестации;
- роганизация и осуществление службы контроля за соблюдением стандартов и технических условий во время производства, государственных испытаний и аттестации качества продукции.

2. Основные термины и их определения

В Украине действует утвержденный стандарт ДСТУ 2681-94 «Метрологія. Терміни та визначення.». В июне 2004 года принят Закон Украины № 1765-IV «Про внесення змін до Закону України "Про метрологію та метрологічну діяльність", в котором приведены, в частности основные термины и их определения.

МЕТРОЛОГИЯ – ЭТО НАУКА ОБ ИЗМЕРЕНИЯХ, МЕТОДАХ И СРЕДСТВАХ ОБЕСПЕЧЕНИЯ ИХ ЕДИНСТВА И СПОСОБАХ ДОСТИЖЕНИЯ ТРЕБУЕМОЙ ТОЧНОСТИ.

Итак:

- измерения
- их единство
- их точность

измерения

Объекты материального мира имеют бесчисленное множество различных *свойств*: объём, масса, цвет и т.д. Для многих свойств применимы понятия «больше» – «меньше», например, масса Земли больше массы Луны; вкус лимона более кислый, чем апельсина. Для некоторых свойств применимы не только понятия «больше» – «меньше», но и *во сколько раз больше или меньше*: масса Земли в 81 раз больше массы Луны (приблизительно). Но нельзя сказать, что лимон во сколько-нибудь раз, например, в два раза кислее апельсина. А почему нельзя? Потому что для массы существует *единица измерения* – килограмм – а для вкусовых ощущений она ещё не создана.

Те свойства, для которых существуют единицы измерения, называют ФИЗИЧЕСКИМИ ВЕЛИЧИНАМИ: длина, масса, сила электрического тока и т.д.

Физические величины содержат в себе качественный и количественный признаки. Качественный – что это за величина, например, сила электрического тока. Количественный – сколько единиц содержится в данной физической величине, например, 5,4 А. Здесь 5,4 А – значение силы электрического тока (далее для краткости просто «тока»). Нельзя говорить «величина тока 5,4 А», потому что величина — это сам ток. Надо говорить: «значение тока 5,4 А».

ФИЗИЧЕСКАЯ ВЕЛИЧИНА – ЭТО СВОЙСТВО, ОБЩЕЕ В КАЧЕСТВЕННОМ ОТНОШЕНИИ МНОГИХ ФИЗИЧЕСКИМ ОБЪЕКТАМ, НО ИНДИВИДУАЛЬНОЕ В КОЛИЧЕСТВЕННОМ.

Результат измерения – это именованное число, например, 5,83 мкА.

Но как получить это число? Нужно сравнить данную величину с её единицей (или с её дольной единицей). Единица электрического тока — ампер. Но что такое ампер? Как определена эта единица? Вот теоретическое определение:

«Ампер равен силе не изменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенными в вакууме на расстоянии 1 м один от другого, вызвал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2×10^{-7} H».

Совершенно ясно, что практически всё это недостижимо: бесконечная длина, вакуум. Практически ампер воплощается в *эталоне* ампера.

По своему смыслу эталон — это *мера*. Его назначение — хранить и воспроизводить физическую величину заданного размера.

Но простейшая линейка — это тоже мера, мера длины. Эталоны — это меры высшей точности. Это очень дорогие устройства, которые хранятся в метрологических институтах. Они находятся в специальных помещениях со стабильной температурой. Есть специальная должность — хранитель эталона.

По длинной цепочке размер единицы передаётся от самого точного первичного эталона ко вторичному, далее к рабочим эталонам и наконец доходит до рабочих измерительных приборов и мер.

В некоторых редких случаях для выполнения измерения достаточно только меры: измерение длины линейкой. Длина непосредственно воспринимается зрением. В большинстве же случаев одной меры недостаточно. Например, массу какого-либо тела можно измерить путём взвешивания на рычажных весах. Здесь тоже присутствует мера — это гири, но одних гирь недостаточно, нужны весы. Весы вместе с гирями — это измерительный прибор, в котором мера присутствует непосредственно. Есть другие весы, пружинные, со шкалой и стрелкой.

Теперь можно дать определение понятию «измерение»:

ИЗМЕРЕНИЕ – ЭТО СОВОКУПНОСТЬ ОПЕРАЦИЙ ПО ПРИМЕНЕНИЮ ТЕХНИЧЕСКОГО СРЕДСТВА, ХРАНЯЩЕГО ЕДИНИЦУ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ, ОБЕСПЕЧИВАЮЩИХ НАХОЖДЕНИЕ СООТНОШЕНИЯ ИЗМЕРЯЕМОЙ ВЕЛИЧИНЫ С ЕЁ ЕДИНИЦЕЙ И ПОЛУЧЕНИЕ ЗНАЧЕНИЯ ЭТОЙ ВЕЛИЧИНЫ.

Основное уравнение измерения имеет вид:

$$Q = qU, (1.1)$$

где Q – значение ΦB ;

q – числовое значение (количество единиц) ΦB ;

U – единица измерения ΦB .

Измерить какую-либо физическую величину – это узнать, сколько в ней содержится единиц.

Физические величины могут быть:

- механические сила, давление, ...
- пространства и времени длина, время, скорость,...
- тепловые температура, теплоёмкость, теплопроводность, ...
- электрические ток, напряжение, мощность, сопротивление, ...
- световые сила света, световой поток, освещённость, ...
- акустические скорость звука, звуковое давление, ...

По характеру проявления размеров в процессе исследований ФВ разделяют на:

- энергетические (активные), сами проявляющие свои размеры (температура, ток, напряжение, мощность);
- параметрические (пассивные), проявляющиеся при действии на объект активной ФВ (сопротивление, емкость, индуктивность).

ЕДИНСТВО ИЗМЕРЕНИЙ – ЭТО СОСТОЯНИЕ ИЗМЕРЕНИЙ, ПРИ КОТОРОМ ИХ РЕЗУЛЬТАТЫ ВЫРАЖЕНЫ В УЗАКОНЕННЫХ ЕДИНИЦАХ И ПОГРЕШНОСТИ ИЗМЕРЕНИЙ НЕ ВЫХОДЯТ ЗА УСТАНОВЛЕННЫЕ ГРАНИЦЫ С ЗАДАННОЙ ВЕРОЯТНОСТЬЮ.

«Узаконенные единицы» – это единицы СИ и некоторые внесистемные единицы, разрешённые к применению (их около 20, например, тонна, гектар).

ТОЧНОСТЬ ИЗМЕРЕНИЙ

Количественно точность измерений характеризуется *погрешностями измерений*. Есть две формы выражения погрешностей измерение:

- абсолютная погрешность измерения Δ ;
- относительная погрешность измерения δ.

Абсолютная погрешность измерения:

$$\Delta = X - X_{\text{HCT}}, \tag{1.2}$$

где Х – результат измерения;

Хист – истинное значение измеряемой величины.

Здесь $X_{\text{ист}}$ принципиально неизвестно (иначе, зачем было бы измерять?!), поэтому формула (1.2) годится только для теоретических исследований. На практике вместо неё применяется другая:

$$\Delta = X - X_{\pi}, \tag{1.3}$$

где $X_{\text{д}}$ – действительное значение измеряемой величины, достаточно близкое к $X_{\text{ист}}$, так что может использоваться вместо него.

В отличие от $X_{\text{ист}}$ значение $X_{\text{д}}$ доступно для практического получения с помощью средства измерений, в достаточной мере более точного, чем данное, давшее результат X.

Для того, чтобы не путаться в знаке погрешности, запомним, что всегда

ПОГРЕШНОСТЬ – ЭТО ИЗМЕРЕННОЕ МИНУС ДЕЙСТВИТЕЛЬНОЕ

Относительная погрешность измерения:

$$\delta = \frac{\Delta}{X_{\text{ист}}} = 100 \frac{\Delta}{X_{\text{ист}}} (\%),$$
 или
$$\delta = \frac{\Delta}{X_{\delta}} = 100 \frac{\Delta}{X_{\delta}} (\%). \tag{1.4}$$

Поскольку $\Delta << X_A$, т.е. X и X_A близки, часто используют формулу

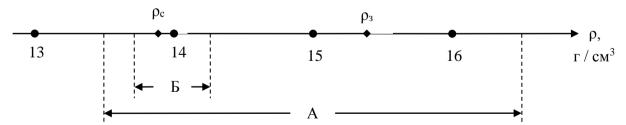
$$\delta = \frac{\Delta}{X} = 100 \frac{\Delta}{X} (\%), \tag{1.5}$$

потому что обычно известно не $X_{д}$, а X.

Выполнив измерение, недостаточно указать только его результат X. Обязательно нужно определить и указать граничное значение погрешности $\Delta_{\rm rp}$ при некоторой близкой к единице вероятности, например, при вероятности P=0.95. Что это значит? Дело в том, что мы не знаем конкретного значения Δ , но с вероятностью P можем утверждать, что

$$-\Delta_{\rm rp} \le \Delta \le \Delta_{\rm rp}. \tag{1.6}$$

Другими словами, мы не знаем $X_{\text{ист}}$, но с вероятностью P можем утверждать, что $X_{\text{ист}}$ находится в интервале


$$X - \Delta_{\rm rp} \le X_{\rm HCT} \le X + \Delta_{\rm rp}. \tag{1.7}$$

Бывают случаи, когда без указания $\Delta_{\rm rp}$ результат X становится бессмысленным или даже вредным.

Примером может служить древняя задача, которую, по преданию, решал Архимед. Его попросили определить, изготовлена ли корона из золота или это подделка — гораздо более дешёвый сплав, внешне похожий на золото. Архимед знал плотности золота и подозреваемого сплава: $\rho_3 = 15.5 \text{ г} / \text{ cm}^3$; $\rho_c = 13.8 \text{ г} / \text{ cm}^3$. Плотность короны обозначим ρ_{κ} . Для определения ρ_{κ} обратились к двум экспертам A и Б. Результаты их работы:

	Эк	Эк
	сперт А	сперт Б
Оценка ρ_{κ} , г / см ³	15	13,
		9
Вероятный интервал	13,	13,
$\rho_{\rm K}$, Γ / cm ³	5 – 16,5	7 - 14,1

Покажем эти результаты на графике:

Замечания:

- 1) Интервалы A и Б перекрываются, значит, оба измерения *правильны*, т.е. не противоречивы. Если бы интервалы не перекрывались, естественно было бы считать, что хотя бы один эксперт ошибся.
- 2) Погрешность измерения эксперта A столь велика, что его результат *бесполезен*: в его интервал попали и ρ_3 и ρ_c , значит, нельзя узнать, из чего сделана корона.
- 3) Данные эксперта Б ясно говорят, что корона *фальшивая*: в его интервал попадает ρ_c и не попадает ρ_3 .
- 4) Значит, для того, чтобы по результатам измерений можно было сделать правильный вывод, погрешность измерения *не должна быть слишком большой*, как у эксперта А. Однако, нет

необходимости в том, чтобы она была очень мала. Она должна быть *разумно мала*, как у эксперта Б

Главный вывод: оба измерения были бы бессмысленны, если бы они не содержали сведений о погрешностях. Более того, результат эксперта A наталкивал бы на мысль, что корона золотая.

Итак, кроме самого результата измерения должны быть указаны границы интервала, в котором с данной вероятностью находится истинное значение измеряемой величины. Этот интервал называют доверительным интервалом, а эту вероятность – доверительной вероятностью.

Пример записи результата измерения:

$$(5,481 \pm 0,025)$$
 mA; $P = 0,95$.

Размер доверительного интервала при данной доверительной вероятности характеризует *точность*. Чем уже интервал при той же вероятности, т.е. чем меньше погрешность, тем выше точность.

Если интервал не указан, количество разрядов числа, выражающего результат измерения, ориентировочно свидетельствует о точности. Сравните, например, две записи: 5,4 A и 5,43135 A.

При этом не следует думать, что чем точнее, тем лучше. И это не только потому, что чем точнее, тем дороже обойдётся полученный результат. При увеличении точности мы обязательно столкнёмся с тем, что наша мысленная модель объекта перестаёт быть адекватной самому объекту.

Простой пример. Пусть нам надо измерить высоту проёма двери. Мы можем взять рулетку и измерить с погрешностью, не выходящей за пределы \pm 0,5 см. Но если мы захотим произвести более точное измерение, например, такое, что погрешность не выходит за пределы \pm 0,5 мм, мы обнаружим, что наша модель проёма в виде прямоугольника перестаёт быть адекватной: высота не одинакова по ширине.

Поэтому, строго говоря, понятие *физическая величина* относится не к самому объекту, а к его модели. По мере уточнения результатов измерений можно переопределять модель. Например, может выясниться, что модель проёма — это не прямоугольник, а трапеция.

3. Международная система единиц физических величин (ФВ)

Обилие единиц для одной и той же величины — большое неудобство. В 18 веке в Европе были сотни различных «футов». Постепенно пришли к ограниченному числу *систем единиц*, а идеал — одна система для всего мира.

В 1960 году большинство стран мира приняло международную систему – в русской транскрипции СИ (система интернациональная), в международной – SI (System International).

В Украине применяются единицы измерения Международной системы единиц, принятой Генеральной конференцией по мерам и весам и рекомендованной Международной организацией законодательной метрологии.

Система единиц — это совокупность независимых и производных единиц, которая охватывает все или некоторые составляющие измерений и создана таким образом, что соотношения между единицами определяются уравнениями зависимости, за исключением соотношений между независимыми единицами.

Как любая система единиц, она содержит несколько независимых *основных* единиц:

- единица длины метр (м, m);
- единица массы килограмм (кг, kg);
- единица времени секунда (c, s);
- единица силы электрического тока ампер (A, A);
- единица термодинамической температуры кельвин (К, К);
- единица силы света кандела (кд, cd);
- единица количества вещества моль (mol);

две дополнительные:

- радиан (рад) для измерения плоского угла (угла между двумя радиусами круга, длина дуги между которыми равна радиусу);
- стерадиан (cp) для измерения телесного угла (угла с вершиной в центре сферы, который вырезает на ее поверхности площадь, равную площади квадрата со стороной, равной радиусу сферы).

и множество (больше ста) *производных* единиц. Они образуются из основных на основе фундаментальных физических законов. Например, вольт:

$$\mathbf{B} = \frac{\mathbf{B}\mathbf{T}}{\mathbf{A}} = \frac{\mathbf{\mathcal{I}}\mathbf{\mathcal{K}}}{\mathbf{c} \times \mathbf{A}} = \frac{\mathbf{H} \times \mathbf{M}}{\mathbf{c} \times \mathbf{A}} = \frac{\mathbf{K}\mathbf{\Gamma} \times \mathbf{M}^2}{\mathbf{c}^3 \times \mathbf{A}}$$

Некоторые производные единицы измерения:

- единица силы ньютон (Н); 1кг=9,80625Н;
- единица работы джоуль (Дж); 1Дж=1H·1м;
- единица мощности Ватт (Вт); 1Вт=1Дж:1с;
- единица давления, механического напряжения паскаль (Па); 1Па=1H:1м²;
- единица электрического напряжения вольт (В), 1В=1Вт:1А;
- единица электрического сопротивления Ом (Ом), 1Ом=1Вт:1А;
- единица количества электричества кулон (Кл), 1Кл=1A·1c.
- единица скорости линейной- м/с;
- единица ускорения M/c^2 ;
- единица угловой скорости рад/с;
- единица углового ускорения рад/ c^2 ;
- единица частоты периодического процесса Гц;
- единица частоты вращения c^{-1} ;
- единица плотности $\kappa \Gamma / M^3$;
- единица удельного объема м³/кг.

Физические величины принимают свои значения в широких диапазонах. Чтобы избежать чисел с большим количеством нулей, применяют *кратные* и *дольные* единицы. Для снижения вероятности ошибок при расчетах кратные и дольные единицы советуют подставлять только в конечный результат.

В табл. 1.2 приведены приставки и множители, используемые для образования кратных и дольных единиц.

Таблица 1.1

Множитель	Приставки	Обозначен	ие приставки
_	украинское	международное	
10^{18}	экса	Э	Е
10^{15}	пета	П	P
10^{12}	тера	T	T
109	гига	Γ	G
10^{6}	мега	M	M
10^{3}	кило	К	k
10^{2}	гекто	Γ	h
10^{1}	дека	да	da
10-1	деци	Д	d
10^{-2}	санти	c	c
10^{-3}	милли	M	m
10 ⁻⁶	микро	MK	μ
10-9	нано	Н	n
10 ⁻¹²	пико	П	p
10 ⁻¹⁵	фемто	ф	f
10 ⁻¹⁸	атто	a	a

Например, 10^{-3} м=1мм; 10^{-6} =1мкм.

Несистемные единицы, которые допускают к применению на одном уровне с единицами СИ:

- масса т (в перспективе мегаграмм);
- время мин, час, сутки;
- емкость $\pi (дм^3)$;
- плоский угол градус ... °; минута ... '; секунда ".

Их использование связано с рациональностью применения, историческими традициями.

В некоторых отраслях пользуются английской (дюймовой) системой мер — совокупностью единиц Φ В, основой которой является единица длины ярд (1 ярд=36 дюймам). По международному соглашению принято, что дюйм равен 0,0254 м.

Основными преимуществами системы СИ являются:

- 1) универсальность (она охватывает все аспекты отрасли измерений);
- 2) согласованность (все производные единицы образованы по единому правилу, которое исключает появление в формулах коэффициентов, что значительно упрощает расчеты);
- 3) возможность создания новых производных единиц с развитием науки и техники на основе принятых;
 - 4) удобство в практическом использовании большинства единиц системы и др.

4. Эталоны единиц ФВ. Поверочные схемы

Эталоны создают для воспроизведения и (или) хранения единиц физических величин (далее – единиц) и передачи их размеров средствам измерений, применяемым и стране, с целью обеспечения единства измерений. При помощи эталона воспроизводят и (или) хранят одну единицу или несколько взаимосвязанных единиц.

ЭТАЛОН – СРЕДСТВО ИЗМЕРИТЕЛЬНОЙ ТЕХНИКИ (СИТ), ОБЕСПЕЧИВАЮЩЕЕ ВОСПРОИЗВЕДЕНИЕ И (ИЛИ) ХРАНЕНИЕ ЕДИНИЦЫ ИЗМЕРЕНИЙ ОДНОГО ИЛИ НЕСКОЛЬКИХ ЗНАЧЕНИЙ, ПЕРЕДАЧУ РАЗМЕРА ЭТОЙ ЕДИНИЦЫ ДРУГИМ СИТ, И ОФИЦИАЛЬНО УТВЕРЖДЕННЫЙ КАК ЭТАЛОН.

Эталоны по подчиненности подразделяют на первичные (исходные) и вторичные (подчиненные).

Первичные — эталоны, обеспечивающие воспроизведение и хранение единицы физической величины с наивысшей в стране точностью.

Первичные эталоны в зависимости от условий воспроизведения единицы могут иметь разновидность — *специальные первичные эталоны* (далее — специальные эталоны). Специальный эталон воспроизводит единицу в особых условиях (высокое давление или температура, среда с парами кислот, щелочей и др.).

Официально утвержденные в качестве исходных для страны первичные или специальные эталоны называются *государственными*.

Государственные эталоны представляют собой национальное достояние и поэтому должны храниться в метрологических институтах страны (НИИ Госпотребстандарта) в специальных эталонных помещениях, где поддерживается строгий режим по влажности, температуре, вибрациям и другим параметрам.

Для обеспечения единства измерений величин в международном масштабе большое значение имеют международные сличения национальных государственных эталонов. Эти сличения помогают выявить систематические погрешности воспроизведения единицы национальными эталонами, установить, насколько национальные эталоны соответствуют международному уровню, и наметить пути совершенствования национальных (государственных) эталонов. Международные эталоны хранятся в Международном бюро мер и весов (например, прототип килограмма – платиново-иридиевая гиря).

Эталон, получающий размер единицы путем сличения с первичным эталоном рассматриваемой единицы, называется *вторичным* эталоном.

Основанием для создания подчиненных эталонов является целесообразность:

- предохранения исходного эталона от преждевременного износа;
- обеспечения сличений эталонов;
- контроля за неизменностью размера единицы, воспроизводимой исходным эталоном.

К вторичным эталонам относят эталоны-копии, эталоны сравнения и рабочие эталоны.

Эталоны-копии предназначены для передачи размера единицы рабочим эталонам.

Эталоны сравнения предназначены для взаимного сличения эталонов, которые по тем или иным причинам нельзя непосредственно сличать друг с другом.

Рабочие эталоны предназначены для поверки наиболее точных рабочих средств измерений.

В течение всего срока службы эталонов исследуют их свойства с целью обеспечения неизменности размеров воспроизводимых и (или) хранимых ими единиц и повышения точности эталонов.

Для наблюдения за правильным хранением, сличением и исследованием эталонов, а также выполнением других требований назначают ученых хранителей эталонов.

В случае если невозможно применить государственный эталон (отказ, утрата и др.), его функцию по решению Госпотребстандарта временно передают вторичному эталону.

Часто эталонами являются громоздкие системы, состоящие из множества приборов и оборудования. Так, например, для установления единицы света (канделы) необходим эталон в виде трубки из оксида тория, погруженной в расплавленную платину, поскольку кандела — это сила света, излучаемого с поверхности площадью 1/60000 м² в перпендикулярном направлении при температуре излучателя, равной температуре твердения платины при давлении 101 325 Па.

Первичные эталоны основных единиц ФВ

Первичный эталон единицы длины – метр, равный длине пути, который проходит в вакууме свет за 1/299792458 долю секунды.

Первичный эталон единицы массы — килограмм — гиря из специального немагнитного (платиново-иридиевого) сплава, выполненная в форме цилиндра, высота которого равна диаметру. Масса прототипа более чем за 60 лет применения изменилась всего лишь на 0,017 мг.

Первичный эталон времени — секунда — равна 9192631770 периодам излучения, что соответствует переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133. Стабильность частоты цезиевого эталона является следствием квантовых закономерностей, которые обусловливают постоянство энергии перехода атомов с одного энергетического уровня на другой при отсутствии внешних магнитных полей.

Первичный эталон единицы силы электрического тока — ампер - равен силе не изменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенными в вакууме на расстоянии 1 м один от другого, вызвал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2×10^{-7} H.

Первичный эталон единицы температуры — единица термодинамической температуры — кельвин — 1/273,16 часть термодинамической температуры тройной точки воды. Тройная точка воды — это состояние равновесия ее твердой, жидкой и газообразной фаз. Вместе с термодинамической температурой Кельвина используется также и термодинамическая температура Цельсия, единицей которой является градус Цельсия °С. Связь между температурой Кельвина и температурой Цельсия выражается соотношением

$$t^{\circ}C = TK - 273,16K$$

где t — температура Цельсия в международной практической температурной шкале 1968 г.;

T — температура Кельвина;

273,16К – температура точки плавления льда по шкале Кельвина.

Первичный эталон единицы силы света – кандела, равная силе света в заданном направлении источника, который выпускает монохроматическое излучение частотой

 $540 \cdot 10^{12}$ Гц, энергетическая сила которого в этом направлении составляет 1/683 Вт/ср. Частота $540 \cdot 10^{12}$ Гц соответствует длине волны 555,016 нм для стандартной атмосферы.

Eдиница количества вещества — моль, равный количеству вещества системы, которая содержит столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг. Точно воспроизвести единицу количества вещества можно разными способами, например, сжигая 0,012 кг углерода в чистом кислороде, получим точно один моль молекул углекислого газа.

Передачу размеров единиц от эталонов следует производить в соответствии с поверочными схемами, требования к которым установлены стандартом.

Передача размеров единиц ΦB от эталонов рабочим мерам и измерительным приборам осуществляется с помощью рабочих эталонов (рис. 1.1).

Рабочие эталоны при необходимости подразделяются на разряды 1;2 и т.д., определяющие порядок их соподчинения в соответствии с поверочной схемой. Исходя из требований практики для различных видов измерений устанавливают различное число разрядов рабочих эталонов, определяемых стандартами на поверочные схемы для данного вида измерений.

Рисунок 1.1 – Обобщенная схема передачи размера единиц физических величин

Обеспечение правильной передачи размера единиц ФВ во всех звеньях метрологической цепи осуществляется посредством поверочных схем.

 ${\it Поверочная\ cxema}$ — это нормативный документ, который устанавливает соподчинение средств измерений, участвующих в передаче размера единицы от эталона к рабочим СИ с указанием методов и погрешности.

Поверочные схемы оформляют в виде чертежа, элементы которого приведены на рис. 1.2.

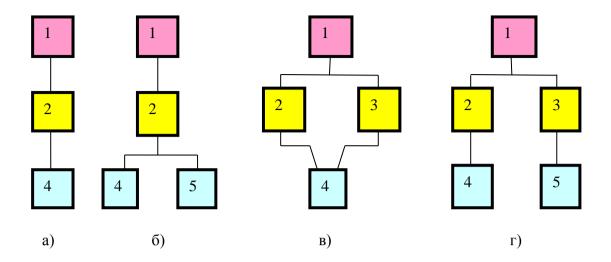


Рис. 1.2. Элементы графического изображения поверочных схем при передаче размера от эталона к объекту поверки: 1 – эталон; 2 и 3 – методы передачи размера единицы; 4 и 5 – объекты поверки.

На чертежах поверочной схемы должны быть указаны:

- наименования СИ и методов поверки;
- номинальные значения ФВ или их диапазоны;
- допускаемые значения погрешностей СИ;
- допускаемые значения погрешностей методов поверки.