РАЗВИТИЕ ЧИСЛЕННЫХ МЕТОДОВ ПРИ ИСПОЛЬЗОВАНИИ ГАЗОПОРОШКОВЫХ СТРУЙ В МЕТАЛЛУРГИИ

Чиж В.В. *(ЭТ-10)** Приазовский государственный технический университет

В последние годы вдувание технологических порошков в расплавы и агрегаты позволяет усовершенствовать технологию производства чугуна и стали. Масштабы использования порошков на меткомбинатах очень внушительные. Например, только на ММК им. Ильича через ~ 90 форсунок в 5 доменных печей будут вдувать ~ 1 млн m угля в год (~ 16 mыc. вагонов).

Цель исследования — используя современные модели, включающие системы дифференциальных уравнений, показать каким образом концентрация порошка, диаметр частиц и коэффициент их формы, теплоподвод через стенку фурмы, коэффициенты восстановления нормальной и тангенциальной скорости частиц при ударах о стенку, массовая доля частиц разного диаметра влияет на заглубление газопорошковой струи в расплавы чугуна и стали.

Так, например, на рисунке показано влияние плотности ρ_2 порошкадесульфуратора на заглубление двухфазной струи в металл. Видно, что чем меньше плотность частиц, тем больше h_{cmp} при любой температуре несущего

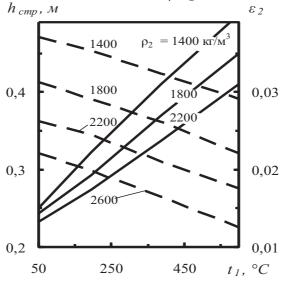


Рисунок — Зависимость длины струи h_{cmp} (—) и объемной доли несущего газа ε_2 (—) от плотности ρ_2 порошка, а также от температуры газоносителя t_1 на выходе из фурмы.

газа t_1 . Это объясняется тем, что с повышением плотности ρ_2 уменьшается скорость как газовой фазы w_1 , так и частиц w_2 . Это приводит к тому, что объемная доля ε_2 существенно снижается, что увеличивает плотность смеси ρ_{12} . Но снижение скорости смеси w_{12} в квадрате влияет на число Архимеда. В итоге глубина проникновения струи уменьшается. Аналогичным образом решена задача по влиянию целого ряда факторов на заглубление струи в металл.

^{*} Руководитель – к.т.н., доц. каф. теплофизики и теплоэнергетики металлургического производства Куземко Р.Д.