МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ, МОЛОДЁЖИ И СПОРТА УКРАИНЫ ГВУЗ «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» ИНСТИТУТ ГОРНОГО ДЕЛА И ГЕОЛОГИИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

и контрольные задания по курсу «Геотехнологии горного дела. Механика горных пород»

для студентов заочной формы обучения по направлениям подготовки 050301 «Горное дело», 050303 «Переработка полезных ископаемых» и 050503 «Машиностроение»

Рассмотрено на заседании кафедры Горной геомеханики, протокол № 4 от 18.10.12 г.

Утверждено на заседании Учебно-издательского совета ДонНТУ, Протокол № 5 от 22.11.12 г.

Донецк, ДонНТУ - 2012

УДК 622.23 (071)

Методические указания и контрольные задания по курсу «Геотехнологии горного дела. Механика горных пород» (для студентов заочной формы обучения по направлениям подготовки 050301 «Горное дело», 050303 «Переработка полезных ископаемых» и 050503 «Машиностроение») / Сост. И.А.Ефремов, С.В.Подкопаев, В.И. Каменец – Донецк: ДонНТУ, 2012 г. – 28 с.

Приведена рабочая программа курса «Геотехнологии горного дела. Механика горных пород» для студентов заочной формы обучения по направлениям подготовки 050301 «Горное дело», 050303 «Переработка полезных ископаемых» и 050503 «Машиностроение». Даны рекомендации по самостоятельному изучению дисциплины. Предложены 15 контрольных заданий, включающих 40 задач по всем разделам курса.

Составители: И.А. Ефремов, зав. каф., д.т.н.

С.В. Подкопаев, проф.

В.И. Каменец, доц.

Отв. за выпуск

И.А. Ефремов, зав. каф., д.т.н.

ВВЕДЕНИЕ

Геотехнологии горного дела. Механика горных пород - дисциплина, изучающая физические, главным образом механические свойства горных пород, процессы и явления, происходящие в них при ведении горных работ, обработке и переработке полезных ископаемых.

Различные физические явления сопутствуют технологическим процессам проведения выработок и выемки полезных ископаемых, кроме того, они могут специально инициироваться в породах для достижения оптимального эффекта при добыче и переработке.

Предметом (объектом) исследования изучаемой дисциплины являются горные породы и массивы. При исследованиях в основном используются методы физики твердого тела. Цель дисциплины - совершенствование горного производства. Дисциплина является связующим и переходным звеном между общеобразовательными и геологическими дисциплинами, с одной стороны, и специальными дисциплинами (Технология горного производства, Разрушение горных пород взрывом, Механика подземных сооружений и конструкции крепей, Проведение горных выработок, Горные машины и др.), с другой стороны.

Основная цель преподавания курса - изучение студентами сущности, количественной и качественной оценки физико-технических параметров горных пород, их зависимости от состава и строения пород, изменчивости от воздействия вещественных и физических полей, а также приобретение навыков расчета режимов работы и производительности горного оборудования, разработки и создания новых геотехнологий, изыскания методов контроля состояния и управления состоянием горного массива.

- а) уметь определять основные физико-технические параметры горных пород в лабораторных и натурных условиях, обрабатывать экспериментальные данные;
- б) ориентироваться в научно- технической литературе по физике горных пород и процессов;
- в) знать физическую сущность процессов, происходящих в горном массиве при воздействии на породы физическими полями;

- г) помнить определения, размерности и наиболее вероятные численные значения важнейших физико- технических параметров; знать тенденции их изменения при воздействии тех или иных физических полей;
- е) представлять тенденции и перспективные пути развития горнодобывающей промышленности с учетом достижений современной науки.

ОБЕСПЕЧИВАЮЩИЕ ДИСЦИПЛИНЫ И ФОРМЫ ИЗУЧЕНИЯ МАТЕРИАЛА

Для усвоения дисциплины студенту необходимо знать следующие разделы общеобразовательных наук.

Высшая математика: Векторная алгебра и аналитическая геометрия. Дифференциальное и интегральное исчисления одной и нескольких переменных, Дифференциальные уравнения. Уравнения математической физики. Теория вероятностей.

Физика: Физические основы механики, молекулярной, квантовой физики и термодинамики. Кинематические представления механики. Динамические принципы механики. Законы сохранения. Колебания и волны. Макроскопические состояния. Процессы переноса. Фазовые переходы. Электрическое и магнитное поля в веществе. Основы оптики и ядерной физики.

Химия: Строение твердых, жидких и газообразных тел. Основные закономерности химических реакций. Растворы и другие дисперсные системы. Электромеханические процессы. Общая характеристика химических элементов и соединений. Специальные вопросы химии.

Введение в специальность; горные выработки, технология их проведения. Технология добычи полезных ископаемых.

Геологические дисциплины; Краткий курс кристаллографии. Состав и классификация минералов. Процессы минералообразования. Горные породы их состав и строение. Структура и текстура. Формы залегания горных пород. Внутреннее строение земли. Физические поля Земли. Геологические процессы. Гидрогеология. Разведка месторождений.

Для студентов заочной формы обучения основной формой учебного процесса являются самостоятельные занятия. На установочной сессии в начале учебного семестра читается курс обзорных лекций (2-8 часов). Используя указания обзорных лекций, студентам необходимо планомерно изучить материал курса, систематически работая с рекомендуемой литературой.

Следует самостоятельно составить краткий конспект проработанного материала в соответствии с рабочей программой курса, приведенной ниже.

После изучения материала выполняется контрольное задание по персональному варианту. Контрольное задание студент сдает на проверку, а затем защищает при встрече с преподавателем не позднее, чем за 10 дней до начала сессии.

До начала зачетно - экзаменационной сессии студенты заочной формы обучения выполняют от 2 до 4 лабораторных работ.

Завершающим этапом в изучении курса является сдача зачета или экзамена.

Возможно досрочное выполнение лабораторных работ, сдача зачета и экзамена в консультационные дни.

Самоконтроль при изучении курса и при подготовке к зачету или экзамену осуществляется путем ответов на вопросы для самопроверки.

РАБОЧАЯ ПРОГРАММА КУРСА И СОДЕРЖАНИЕ УЧЕБНЫХ ЗАНЯТИЙ

1.1 Введение

Социально - экономическая обусловленность возникновения и развития физики и механики горных пород в бывшем СССР, странах СНГ и Украине. Диалектическое единство физики горных пород с другими науками. Предмет и методы физики и механики горных пород. Значение физики и механики горных пород для смежных дисциплин и производства.

1.2. Понятие о физико-технических свойствах горных пород. Плотностные свойства горных пород.

Понятие поля и классификация физических полей. Физико-технические свойства и параметры горных пород как отражение состояния пород и их связи с физическими полями. Базовые физико-технические параметры горных пород. Влияние минерального состава и строения пород на их свойства. Изотропность и анизотропность свойств пород. Горные породы как полиминеральные, многофазные, сильнодефектные тела. Дефекты в горных породах, трещиноватость, пористость, плотность, и объемная масса. Технологические параметры разрыхленных пород: насыпной вес, коэффициент разрыхления, угол естественного откоса.

Гранулометрический состав. Значение плотностных характеристик в практике горного дела.

1.3 Механические и акустические свойства и процессы в горных породах

Напряженно - деформированное состояние в горных породах. Понятие о тензорах напряжения и деформаций.

Связь между напряжениями и деформациями в горных породах. Упругость и пластичность. Упругие параметры горных пород. Методы определения деформаций и напряжений в горном массиве. Физика пластичности. Механизмы пластического деформирования.

Реологические свойства пород. Ползучесть горных пород. Релаксация напряжений. Наследственность в горных породах. Эффекты памяти. Роль упругих и реологических свойств пород в расчетах горного давления.

Статические и динамические испытания горных пород. Скорость деформирования. Динамические и статические упругие параметры. Акустические свойства горных пород. Упругие колебания и деформационные волны в горных породах. Распространение деформационных волн в горном массиве. Методы акустической интроскопии. Влияние внутренних и внешних факторов на акустические свойства горных пород. Методы определения акустических свойств пород. Использование акустических свойств для изучения неоднородности строения горного массива и напряженного состояния.

Прочность и пластичность. Теории прочности. Физика прочности. Энергоемкость деформирования и разрушения горных пород. Зависимость прочности и энергоемкости разрушения от внутренних и внешних факторов.

Масштабный фактор. Неоднородность деформирования горных пород. Роль прочности и деформационных параметров в процессах управления состоянием горного массива.

Баланс энергии при разрушении. Полная диаграмма деформирования скальных пород. Характер разрушения горных пород, динамическое и управляемое разрушения. Вязкость и хрупкость.

1.4. Гидравлические и газодинамические свойства горных пород

Гидравлические свойства пород. Виды воды в горных породах Влажность и влагоемкость. Сорбционные процессы. Водопроницаемость, размокаемость, растворимость, пород. Воздействие влаги на горные породы. Газодинамические свойства пород. Дегазация горного массива. Упрочнение и ослабление горных пород. Выбросы угля, породы и газа, их предотвращение.

1.5 Тепловые свойства и процессы в горных породах

Физические основы распространения и накопления тепла в горных породах. Виды теплопроводности. Тепловые свойства горных пород. Зависимость тепловых свойств от внутренних и внешних факторов. Тепловое расширение и термические напряжения в горных породах. Методы измерения тепловых свойств. Использование тепловых свойств и термодинамических процессов в горном деле: разрушение и упрочнение; управление тепловым режимом; бесшахтная добыча полезных ископаемых. Особенности термодинамических процессов при добыче полезных ископаемых в условиях вечной мерзлоты. Экономическая эффективность тепловых способов разрушения.

1.6 Электромагнитные свойства и процессы в горных породах

Электромагнитное поле как особый вид материи. Носители заряда в горных породах. Поляризация пород. Мера поляризации горной породы. Проводимость и диэлектрических свойств пород и их зависимость от внешних и внутренних факторов.

Магнитные свойства горных пород. Виды намагниченности. Магнитные аномалии. Зависимость магнитных свойств от внутренних и внешних факторов.

Распространение электромагнитных волн в горных породах. Электромагнитные эффекты и процесс в породах. Использование электромагнитных свойств пород, радиоинтроскопии. Воздействие электромагнитных полей на породы, эффективность воздействия.

1.7 Специальные горно-технологические показатели горных пород

Специальные горно-технологические показатели скальных, полускальных и разрыхленных пород. Крепость, буримость, дробимость, взрываемость, твердость, абразивность. Технологические свойства угля, сопротивление углей резанию. Связь технологических параметров с физическими и механическими свойствами.

1.8. Взаимосвязь и паспортизация свойств горных пород

Общие положения о взаимосвязи свойств пород. Функциональная и корреляционные связи. Примеры взаимосвязи. Определение свойств пород по установленным зависимостям. Паспортизация горных пород по физико-техническим свойствам. Использование взаимосвязей свойств горных пород в горном деле.

1.9 Механические процессы в массиве горных пород

Силы, действующие в горном массиве. Исходное напряжение состояние массива и его связь с неоднородностью и структурно - механическими свойствами. Факторы, влияющие на проявление горного давления (слоистость, блочность, трещиноватость, форма и размеры блоков, углы падения, складчатость, деформируемость, предельная и остаточная прочность, проницаемость слоев, время, температура и др.). Горное давление при проведении выработок и выемке

полезных ископаемых. Опорное давление вокруг выработок. Динамический характер проявления горного давления. Концентрация напряжений вокруг выработок. Влияние формы и взаиморасположения выработок на концентрацию напряжений. «Большая» глубина разработки с точки зрения геомеханики. Методы изучения горного давления и способы определения напряженно - деформационного состояния горного массива. Вывалообразование, обрушение, пучение, сдвижение, выдавливание, стреляние, горные удары, выбросы угля, породы и газа. Общность форм проявления горного давления. Управление состоянием горного массива. Примеры расчетов напряжений в окрестности подземных выработок. Оптимальное взаиморасположение выработок по напряженному состоянию и критериям разрушения.

ПЕРЕЧЕНЬ ЛАБОРАТОРНЫХ ЗАНЯТИЙ

- 1. Определение плотностных параметров скальных горных пород.
- 2. Определение прочностных параметров горных пород.
- 3. Определение упругих динамических параметров горных пород акустическим методом.

КОНТРОЛЬНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ

- 1. Дайте определение физике и механике горных пород как научным дисциплинам.
- 2. Сформулируйте цель и задачи физики и механики горных пород.
- 3. Что такое физическое свойство и физико-технические параметры?
- 4. Перечислите базовые физико-технические параметры?
- 5. Дефекты в горных породах и их классификация.
- 6. Что называется минералом?
- 7. Как классифицируют минералы?
- 8. Что называется горной породой?
- 9. Какие классификации горных пород вам известны?
- 10. Каковы особенности магматических, осадочных, метаморфических пород?
- 11. Что такое структура горной породы?
- 12. Что называют текстурой породы? Назовите разновидности текстур.
- 13. Что такое плотность, удельная масса породы?
- 14. Что называется удельным весом породы?

- 15. Как определить удельный вес? Удельную массу породы?
- 16. Что называется объёмным весом породы? Как определяют объёмный вес и объёмную массу породы?
- 17. Что называют пористостью породы, трещиноватостью?
- 18. Как классифицируют поры породы?
- 19. Как определить коэффициент пористости?
- 20. Что такое насыпной вес и насыпная масса породы?
- 21. Что называется коэффициентом разрыхления?
- 22. Что такое угол естественного откоса?
- 23. Как оценить гранулометрический состав рыхло породы?
- 24. Что называется напряжением в 2.п.?
- 25. Что называется деформацией породы? Назовите виды деформации.
- 26. Какие виды напряжений возможны в горных породах?
- 27. Постройте графики зависимости между напряжениями и деформациями при различных видах разрушения.
- 28. Какие основные виды упругих деформаций возможны в горных породах?
- 29. Как записать закон Гука для основных упругих деформаций?
- 30. Как определить статические упругие характеристики породы?
- 31. Как определить динамические упругие характеристики породы?
- 32. Как влияют различные факторы (минералогический состав, пористость, трещиноватость, слоистость, температура, влажность и др.) на величину упругих характеристик породы?
- 33. Перечислите основные прочностные показатели горных пород.
- 34. Какая теория прочности является наиболее приемлемой для горных пород?
- 35. Назовите основные методы определения предела прочности на сжатие.
- 36. Как определяют предел прочности на сдвиг?
- 37. Что представляет собой паспорт прочности породы?
- 38. Какие известны методы определения предела прочности на растяжение?
- 39. Какие известны методы построения паспорта прочности породы?
- 40. Что называется коэффициентом сцепления пород?
- 41. Как определяются угол внутреннего трения, коэффициент внутреннего трения?
- 42. Каковы соотношения между прочностными параметрами породы?

- 43. Дайте определение реологических свойств породы?
- 44. Какие реологические явления вам известны?
- 45. Как определяют коэффициент пластичности?
- 46. Что такое число пластичности?
- 47. Что называется ползучестью породы?
- 48. Запишите уравнение ползучести.
- 49. Что называется релаксацией напряжений?
- 50. Что такое период релаксации?
- 51. Запишите уравнение релаксации для реальной породы?
- 52. Что называется длительной прочностью породы?
- 53. Как определить предел длительной прочности?
- 54. Как делятся волны по частоте, характеру деформаций горной породы при распространении звуковых волн, виду волновой поверхности?
- 55. Каковы основные акустические характеристики породы?
- 56. Как определяют скорость звуковых волн в горных породах?
- 57. Что называется амплитудным коэффициентом поглощения?
- 58. Что называется акустическим сопротивлением среды (удельным акустическим импедансом)?
- 59. Как определяются коэффициенты отражения и преломления акустических волн?
- 60. Назовите источники акустических волн в горных породах.
- 61. В чём заключаются методы определения акустических параметров породы: прямое прозвучивание, эхо-метод, метод продольного профилирования, метод критических углов?
- 62. Каково практическое использование звуковых волн в горном деле?
- 63. Какие виды воды различают в горных породах?
- 64. Что называется влагоёмкостью, влажностью, водопроницаемостью породы?
- 65. Как определяется коэффициент водонасыщения?
- 66. Что представляют собой такие явления, как размягчаемость, растворение, размокание, набухание?
- 67. Как записать закон Дарси?
- 68. Какие вы знаете виды статического и динамического воздействия воды на горные породы?

- 69. Что такое газоносность, газоёмкость породы?
- 70. Как определяются коэффициенты газоотдачи, газопроницаемости?
- 71. Как делятся на зоны по содержанию газов верхние слои литосферы?
- 71. Каковы источники тепла в горных породах?
- 72. Что называется геотермической ступенью, нейтральной зоной?
- 73. Какова максимально допустимая температура в горных выработках?
- 74. Как определяется коэффициент теплопроводности, температуропроводности, теплоёмкости, линейного и объёмного теплового расширения, термостойкости, теплоотдачи?
- 75. Как возникают термонапряжения в горных породах?
- 76. Как протекает терморазрушение негабаритов породы? Как осуществляется огневое бурение скважин?
- 77. Какова конструкция газовых горелок? Назовите параметры огневого бурения.
- 78. Какие виды переработки полезного ископаемого под землёй при тепловом воздействии вам известны?
- 79. Как происходит подземная выплавка серы?
- 80. Какие породы относятся к проводникам, полупроводникам диэлектрикам?
- 81. Какие основные электрические характеристики установлены для горных пород-диэлектриков?
- 82. Как зависит поляризованность горных пород-диэлектриков от частоты электрического поля?
- 83. В чём заключаются прямой и обратный пьезоэлектрический эффекты?
- 84. Привести примеры минералов, у которых пьезоэлектрический эффект ярко выражен?
- 85. Какое практическое применение нашли пьезоэлектрический и магнитострикционный эффекты?
- 87. Какое применение в горном деле нашли электрические свойства горных пород?
- 88. На какие группы по своим магнитным свойствам подразделяются горные породы?
- 89. Назовите основные магнитные характеристики горных пород.
- 90. В чём особенности горных пород-ферромагнетиков?
- 91. Какое применение получили диа- и парамагнитные горные породы?

- 92. Какое применение получили ферромагнитные породы?
- 93. Каково практическое применение электромагнитных волн в горном производстве?
- 94. Как определяется коэффициент крепости по Протодьяконову методом толчения?
- 95. Какова методика определения контактной прочности?
- 96. Какова методика определения абразивности пород? Назовите классы пород по абразивности.
- 97. Как определяется дробимость породы? Как классифицируют породы по дробимости?
- 98. Как определяется коэффициент хрупкости породы?
- 99. Что называется буримостью породы? Каковы количественные показатели буримости породы?
- 100. Какие вам известны шкалы буримости пород?
- 101. Что называют взрываемостью породы? Какие вам известны количественные показатели взрываемости?
- 102. Формы работы взрыва и удельный расход ВВ.
- 103. Как определяют сопротивление угля резанию?
- 104. Какие силы создают механическое поле напряжений в массиве горных пород?
- 105. Какие факторы определяют величину напряжений в ненарушенном массиве горных пород для конкретных горно-технологических условий?
- 106. Какие методы используют при исследовании напряжённого состояния ненарушенного массива горных пород?
- 107. Как меняется поле механических напряжений в массиве горных пород при проведении в них одиночных горизонтальных (вертикальных) выработок?
- 108. Коэффициент бокового распора. Гипотезы сплошных сред.
- 109. Коэффициент бокового распора. Гипотезы дискретных сред.
- 110. Сплошность и дискретность породного массива. Критерии «квазисплошности» .
- 111. Трещиноватость и слоистость породного массива.
- 112. Однородность и анизотропия породного массива.
- 113. Понятие о напряженно-деформированном состоянии породного массива.

КОНТРОЛЬНЫЕ ЗАДАНИЯ

1. Определите насыпную массу горной породы в свежедобытом состоянии ρ_{Hc} и после уплотнения ρ_{Hy} (кг/м³), если известна объёмная масса ρ (кг/м³) и соответствующие коэффициенты разрыхления $\kappa_{\rho c}$ и $\kappa_{\rho y}$ (ед).

вариант	0	1	2	3	4	5	6	7	8	9
ρ	2200	2250	2300	2350	2400	2450	2500	2650	2700	1200
Крс	1,45	1,55	1,20	1,25	1,30	1,35	1,40	1,50	1,60	1,20
Кру	1,18	1,22	1,11	1,07	1,10	1,08	1,10	1,15	1,20	1,05

2. Металлический цилиндр высотой 1 дм и площадью 1 дм 2 засыпают рыхлой породой. После этого цилиндр поднимают вертикально. Замером установлено, что высота образовавшегося конуса рыхлой породы \boldsymbol{h} , (дм). Определите угол естественного откоса рыхлой породы $\boldsymbol{\alpha}$, град.

вариант	0	1	2	3	4	5	6	7	8	9
h	0,85	0,90	0,45	0,50	0,55	0,60	0,65	0,70	0,75	0,80

3. Постройте кумулятивную кривую крупности (гранулометрического состава) и определите коэффициент неоднородности разрыхленной породы K_H , (ед) если для фракций частиц размером d,(мм) известно процентное массовое содержание Π_I ,(%).

вариант	0	1	2	3	4	5	6	7	8	9
d=0-5	1	1	2	3	5	10	18	29	38	55
d=5-10	1	2	3	4	10	11	15	17	18	16
d=10-15	1	3	4	6	10	11	13	14	12	9
d=15-20	1	4	6	8	10	11	10	10	10	9
d=20-25	1	5	10	14	10	12	9	5	7	6
d=25-50	95	85	75	65	55	45	35	25	15	5

4. Определите все упругие характеристики песчаного сланца, если: а) - известен модуль упругости E, (ГПа), а модули сдвига и объёмного сжатия равны (G=K); б) — известен модуль сдвига G, (ГПа), а модули упругости и объёмного сжатия равны (E=K).

вариант	0	1	2	3	4	5	6	7	8	9
Е при G=K	64	66	68	70	72	74	76	78	80	82
G при E=K	42	44	46	48	50	52	54	56	58	60

5. При всестороннем сжатии σ_{ob} , (МПа) наблюдали уменьшение всех рёбер образца: Δa , Δb , Δc , (мм). Размер рёбер образца породы: a, b, c (см). При известном коэффициенте Пуассона v, (ед) породы определите все упругие параметры породы.

вари ант	0	1	2	3	4	5	6	7	8	9
$\sigma_{o\delta}$	300	350	400	450	500	475	425	375	325	525
Δa	0,30	0,40	0,50	0,60	0,70	0,80	0,90	1,00	1,20	1,30
$\Delta oldsymbol{b}$	0,15	0,17	0,19	0,21	0,23	0,25	0,27	0,29	0,31	0,33
Δ c	0,16	0,18	0,20	0,22	0,24	0,26	0,28	0,30	0,32	0,34
а	2,0	2,2	2,4	2,6	2,8	3,0	3,2	3,4	3,6	3,8
b	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	3,2
С	1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0
V	0,15	0,12	0,14	0,17	0,23	0,26	0,28	0,30	0,34	0,39

6. Известны модуль всестороннего сжатия породы K, (ГПа) и коэффициент Пуассона \mathbf{v} , (ед). Определите упругие характеристики породы.

7.

вариант	0	1	2	3	4	5	6	7	8	9
К	40	42	43	45	46	48	50	53	56	59
V	0,15	0,17	0,19	0,21	0,22	0,24	0,25	0,27	0,30	0,33

8. Установите, какой из перечисленных плотностных параметров относится к удельной ρ_0 , объёмной ρ и насыпной ρ_H массе, (кг/м³) горной породы. Вычислите общую пористость P, (%), пустотность M, (%) и коэффициент разрыхления K_p , (ед).

вариант	0	1	2	3	4	5	6	7	8	9
1	2,45	2,47	2,49	2,51	2,52	2,54	2,56	2,58	2,60	2,61
2	2,71	1,80	1,60	1,65	1,90	2,00	2,15	1,95	1,85	2,79
3	1,72	2,84	2,93	2,88	2,97	3,00	2,99	3,02	3,08	1,90

9. Размер рёбер образца породы a,b,c, (см). При растяжении образца силой P, (кН) вдоль ребра a наблюдалось удлинение его на Δa , (мм) и укорочение ребра b на Δb , мм). Определите коэффициент Пуассона v, (ед), модули упругости E, сдвига G и всестороннего сжатия K, (МПа).

вариант	0	1	2	3	4	5	6	7	8	9
а	2,50	2,60	2,70	2,80	2,90	3,00	3,10	3,20	3,30	3,40
b	1,80	1,85	1,90	1,95	2,00	2,05	2,10	2,15	2,20	2,25
С	1,50	1,55	1,60	1,65	1,70	1,75	1,80	1,85	1,90	1,95
P	5	6	7	8	9	10	11	12	13	14
Δa	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,95	1,00
$\Delta oldsymbol{b}$	0,10	0,11	0,12	0,14	0,15	0,17	0,18	0,20	0,25	0,32

10. В шахте на глубине H (м) добыт кусок песчаника, из которого на поверхности с высокой точностью изготовлен куб с размером ребра 1 м. Определите какой объём занимал бы этот куб в шахте, если известно, что порода имеет модуль упругости E (ГПа), а коэффициент Пуассона v (ед). Горное давление считать гидростатическим ($\sigma_x = \sigma_y = \sigma_z$). Известна плотность песчаника ρ , (кг/м³).

вариант	0	1	2	3	4	5	6	7	8	9
Н	700	800	850	900	950	1000	1050	1100	1150	1200
E	8	9	10	11	12	13	14	15	10	11
V	0,25	0,27	0,29	0,31	0,33	0,35	0,37	0,39	0,41	0,43
ρ	2450	2500	2550	2600	2650	2700	2650	2600	2550	2500

11. Известны: предел упругости $\sigma_{\rm e}$, (МПа), предел прочности на сжатие $\sigma_{\rm cж}$, (МПа); при испытании образца измерена относительная упругая деформация $\varepsilon_{\rm E}$,

(ед.), и разрушающая деформация ε_p (ед). Постройте диаграмму «напряжение-деформация» по результатам испытания образца и определите: модуль упругости \boldsymbol{E} ; модуль пластичности \boldsymbol{E}_{nn} ; модуль полной деформации $\boldsymbol{E}_{\partial e \phi}$ (ГПа); коэффициент пластичности породы $\boldsymbol{\Pi}$ (ед).

вариант	0	1	2	3	4	5	6	7	8	9
$\sigma_{ m e}$	35	40	45	50	57	59	61	76	77	80
$\sigma_{c \varkappa}$	45	50	55	60	65	70	75	80	85	90
ε _E *10 ³	4,0	4,2	4,3	4,4	4,5	4,7	4,9	5,1	5,4	5,7
$\varepsilon_p^*10^2$	2,0	2,1	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9

12. Постройте два графика E = f(P), если установлено, что между модулем упругости и пористостью существует зависимость $E = E_0 (1-a*P)^2$, где E_0 , (ГПа) — модуль упругости твёрдой фазы; **a**- параметр порового пространства, равный 2 и 4, а коэффициент общей пористости изменяется в пределах 0-90%. Сравните графики, оцените влияние **P** и **a** на модуль упругости. В формуле коэффициент пористости представлять в численном выражении

вариант	0	1	2	3	4	5	6	7	8	9
E ₀	5,5	6,0	6,5	7,0	7,5	8,0	8,5	9,0	9,5	10,0

13. Определите удельную работу хрупкого разрушения песчаника в условиях: одноосного сжатия $\sigma_{cж1}$, (МПа); бокового сжатия при $\sigma_2 = \sigma_3$ (МПа), и вертикальной разрушающей нагрузки $\sigma_{cж2}$ (МПа). Известен коэффициент Пуассона \mathbf{v} , (ед); модуль всестороннего сжатия \mathbf{K} (ГПа).

вариант	0	1	2	3	4	5	6	7	8	9
σ _{сж1}	100	95	90	85	80	75	70	105	100	95
$\sigma_2 = \sigma_3$	14	13	12	10	9	8	7	11	15	10
σ _{сж2}	107	100	98	93	87	82	80	119	111	103
V	0,15	0,18	0,21	0,24	0,27	0,30	0,33	0,36	0,39	0,42
К	4,0	4,5	5,0	5,5	6,0	6,5	7,0	7,5	8,0	8,5

14. Определите величину удельной поверхностной энергии песчаника e_s , если известен модуль упругости E (ГПа), а средний размер трещин в породном образце

составляет **2*****//** (мм). Величина предела прочности на растяжение σ_p (МПа) при спонтанном нарастании трещин в момент разрушения известна.

вариант	0	1	2	3	4	5	6	7	8	9
E	4	5	6	7	8	9	8	7	6	5
2*1	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09	0,025	0,035
σ_p	15	17	19	21	24	27	30	33	36	16

15. Пределы прочности известняка составляют: на одноосное сжатие $\sigma_{cж}$ (МПа), на одноосное растяжение σ_{pacm} (МПа). Постройте паспорт прочности породы. Определите коэффициент сцепления C (МПа) и угол внутреннего трения ϕ (град) графически и аналитически.

вариант	0	1	2	3	4	5	6	7	8	9
$\sigma_{c imes}$	140	130	120	110	100	95	90	85	80	125
σ_{pacm}	13	11	10	12	9	8	9	8	7	13

16. В первый момент приложения нагрузки к образцу породы в нём возникли напряжения, равные σ_o , (МПа). Повторный замер напряжений через t, (сут) показал уменьшение напряжений на $\Delta\sigma$ (МПа). Определите период релаксации t_o (сут) для данной породы и относительный показатель падения напряжений R(%). Как за это же время снизился предел прочности на сжатие, если известно, что длительная

прочность породы имеет следующую зависимость от времени: $\sigma_{\partial n} = \sigma_{cw} = \ln \overline{t}$ (t e часах)?

вариант	0	1	2	3	4	5	6	7	8	9
σ_{o}	60	70	80	90	100	110	120	105	95	85
t	15	20	25	30	35	40	45	50	55	60
Δσ	10	13	18	20	24	28	31	37	40	25

17. В момент нагружения образца в нём возникли напряжения, равные σ_0 (МПа). Через время t (сут) выдерживания образца в условиях постоянной деформации напряжение в нём уменьшилось на $\Delta \sigma$ (МПа). Определите период релаксации t_0 (сут)для этой породы и относительный показатель падения напряжений R(%).

вариант	0	1	2	3	4	5	6	7	8	9
$\sigma_{\rm o}$	55	58	61	64	69	74	79	86	97	104
t	24	27	30	33	36	39	42	46	53	60
Δσ	9	13	15	19	22	26	28	31	34	42

18. Определите напряжения σ_o (МПа) в исследуемом образце доломита в момент приложения, если относительный показатель падения напряжения в породе к концу месяца составил R (%), а величина напряжения в это же время равна σ_1 МПа.

вариант	0	1	2	3	4	5	6	7	8	9
R	11	13	15	17	21	25	27	29	31	34
σ_1	48	50	53	56	59	63	67	71	78	82

- 19. Определите коэффициент водонасыщения K_{eH} двух образцов глинистого сланца, если у первого образца естественная влажность ω_e равна нулю, у второго массовой полной влагоёмкости ω_n .
- 20. В очистном забое отобраны образцы каменного угля: первый образец массой 1,22 кг до увлажнения, второй массой 1,34 кг после полного насыщения водой массива. Высушенные при $t = 110^{\circ}C$ до постоянного значения массы образцы её оказались равными 1,12 кг и 1,25 кг. Определите естественную (молекулярную) влажность $\boldsymbol{\omega}_{e}$, массовую полную влагоёмкость $\boldsymbol{\omega}_{n}$ и коэффициент водонасыщения $\boldsymbol{\kappa}_{e\mu}$.

вариант	0	1	2	3	4	5	6	7	8	9
m _{e1}	1,11	1,12	1,14	1,15	1,18	1,21	1,22	1,24	1,25	1,28
т _{н2}	1,24	1,26	1,28	1,30	1,32	1,34	1,36	1,39	1,43	1,47
m _{c1}	1,01	1,03	1,04	1,05	1,07	1,20	1,12	1,15	1,16	1,18
m _{c2}	1,15	1,17	1,19	1,21	1,33	1,25	1,27	1,30	1,34	1,38

21. Определите величину коэффициента фильтрации породы, если расход воды \mathbf{Q} (м³) через площадку \mathbf{S} (м²) происходит за \mathbf{t} (мин). Определите в ∂ арси величину коэффициента водопроницаемости $\mathbf{K}_{np}(\mathbf{\mathcal{J}})$.

вариант	0	1	2	3	4	5	6	7	8	9
Q	6	7	8	9	10	11	12	15	17	22

S	3	4	5	6	7	8	9	10	11	12
t	5	6	7	9	11	13	15	17	20	22

22. Определите коэффициент отражения (по энергии) K_3 и показатель преломления для упругой волны n на границе песчаник - глинистый сланец, для которых известны: модули упругости E (ГПа), коэффициенты Пуассона v (ед), объёмные массы ρ (кг/м³).Постройте преломленный луч при угле его падения на границу раздела двух пород α °.

вариант	0	1	2	3	4	5	6	7	8	9
E ₁	8,1	8,2	8,3	8,4	8,5	8,6	8,7	8,8	8,9	9,0
E ₂	5,6	5,7	5,8	5,9	6,0	6,1	6,2	6,3	6,4	6,5
V ₁	0,28	0,29	0,30	0,31	0,32	0,33	0,35	0,36	0,38	0,39
V ₂	0,21	0,22	0,23	0,24	0,25	0,26	0,27	0,28	0,29	0,30
ρ1	2600	2570	2530	2520	2460	2470	2480	2500	2530	2510
ρ_2	2700	2670	2640	2610	2580	2550	2570	2600	2620	2610
α	25	30	35	40	45	50	45	40	35	30

23. Определите углы полного внутреннего отражения продольной α_1 и поперечной α_2 волн, идущих из жидкости на образец породы, имеющий плотность ρ (кг/м³), удельную массу ρ_0 (кг/м³), коэффициент Пуассона v (ед). Установлена следующая зависимость модуля упругости от пористости: $E = E_0*(1 - 1,4*P)^2$ (МПа). Скорость волны в жидкости (трансформаторное масло) принять равно v=1420 м/c, $E_0=6,6$ ГПа.

вариант	0	1	2	3	4	5	6	7	8	9
ρ	2350	2400	2450	2500	2550	2500	2450	2400	2350	2300
$ ho_0$	2500	2520	2470	2610	2660	2640	2530	2520	2440	2400
V	0,14	0,15	0,16	0,17	0,17	0,18	0,19	0,22	0,24	0,26

24. Рассчитайте коэффициент отражения от породы упругой продольной волны, падающей на породу из воздуха. Плотность песчаника ρ (кг/м³), удельная масса ρ_0 (кг/м³). Для данного типа пород установлена следующая зависимость модуля упругости от пористости: $E=E_0*(1-3,2P)^2$, (ГПа). Коэффициент общей пористости P подставлять в численном выражении.

вариант	0	1	2	3	4	5	6	7	8	9
ρ	2,58	2,59	2,60	2,61	2,62	2,64	2,66	2,68	2,70	2,72
$ ho_0$	2,70	2,71	2,72	2,76	2,80	2,83	2,86	2,89	2,90	2,92
E ₀	4,1	4,3	4,4	4,5	4,6	4,7	4,8	4,9	5,0	5,1

25. В результате измерений для образца песчаника были определены: предел прочности при сжатии $\sigma_{cж}$ (МПа), предел упругости σ_{E} (МПа), модуль упругости E (ГПа), модуль деформации $E_{\partial e \phi}$ (ГПа). Определите расчётную величину твёрдости H_{κ} , показатель вязкости B, коэффициент хрупкости K_{xp} .

вариант	0	1	2	3	4	5	6	7	8	9
$\sigma_{c \varkappa}$	66	68	70	72	74	78	80	82	86	90
$\sigma_{\!\scriptscriptstyle E}$	44	46	48	49	50	51	53	54	56	60
E	4,0	4,1	4,2	4,3	4,4	4,5	4,6	4,8	4,9	5,1
Едеф	2,5	2,6	2,7	2,8	2,9	3,0	3,2	3,3	3,1	3,0

26. Рассчитайте величину коэффициента пластичности Π , (ед), если известны модуль упругости породы \boldsymbol{E} (ГПа) и модуль деформации $\boldsymbol{E}_{\partial e \phi}$ (ГПа). Дать графическое решение.

вариант	0	1	2	3	4	5	6	7	8	9
E	5	6	7	8	9	10	9	8	7	6
E _{∂eφ}	1,5	1,6	1,8	1,9	2,2	2,6	2,4	2,0	1,9	1,8

27. Определите коэффициент крепости f, показатель контактной прочности P_{κ} u сопротивляемость резанию породы \bar{A} , используя следующие данные.

вариант	0	1	2	3	4	5	6	7	8	9
псбр	5	10	15	20	15	10	5	10	15	25
h	22	30	35	39	30	18	17	25	31	40

ΣP_i	9900	10200	9800	9600	9500	9000	8500	9000	8300	7100
n _{исп}	5	6	7	8	9	10	9	8	7	6
Z	70	100	200	300	400	500	600	700	350	450
h _{реза}	1,0	1,5	2,0	1,5	1,0	1,5	2,0	1,5	1,0	1,5

28. Определите показатели абразивности **A** (мг) и дробимости $\mathbf{K}_{\partial p}$ (см³) песчаника по следующим данным:

вариант	0	1	2	3	4	5	6	7	8	9
G₁	18300	18000	17800	17500	17200	17000	16800	16400	16100	15700
G_2	18120	17930	17650	17390	17150	16890	16710	16320	16100	15630
G ₇	15	20	22	25	28	30	32	34	26	29
Y	2,2	2,3	2,4	2,5	2,6	2,7	2,6	2,5	2,4	2,8

29. Для определения коэффициента теплопроводности песчаника λ через образец в форме диска диаметром d (мм) и толщиной b (мм), пропускают тепловой поток Q (Дж) в течение времени t (с). Температура горячей поверхности $T_1(C^\circ)$, охлаждённой $T_1(C^\circ)$. Рассчитать λ (Вт/м*С°).

вариант	0	1	2	3	4	5	6	7	8	9
d	35	38	40	42	44	46	48	50	52	56
b	10	12	14	16	15	17	18	19	20	22
Q	850	900	950	1000	1050	1100	1150	1200	1250	1300
t	30	35	40	45	50	55	60	55	50	40
T ₁	60	55	50	45	40	35	40	45	50	55
T ₂	10	4	5	6	7	8	9	10	5	6

30. По воздухоподающему стволу диаметром \mathcal{A} (м) в шахту подаётся \mathbf{Q} (м³/с) воздуха, который подогревается калориферной установкой при атмосферном давлении от температуры T_1 (°C) до T_2 (°C). Определить мощность калориферной установки при $\mathbf{K}\Pi\mathcal{A}=70\%$, если теплоёмкость воздуха $\mathbf{C}=1$,0 $\mathbf{K}\mathcal{A}\mathbf{x}/\mathbf{k}\mathbf{z}^*\mathbf{K}^*$.

вариант	0	1	2	3	4	5	6	7	8	9
Д	5,5	6,0	6,5	7,0	7,5	8,0	8,5	9,0	7,0	7,5
Q	200	250	300	350	400	450	500	550	450	500
T ₁	-3	-5	-6	-8	-10	-12	-17	-20	-22	-26
T ₂	20	21	22	23	24	25	24	23	22	21

30. Известен коэффициент общей пористости образца глинистого сланца P (%) Рассчитайте величину коэффициента теплопроводности λ для случаев: поры удлинены и расположены перпендикулярно тепловому потоку, поры удлинены и расположены параллельно тепловому потоку; среднее значение коэффициента теплопроводности. Коэффициент теплопроводности воздуха равен $\lambda_{\mathfrak{g}}$ (Вт/м*К°)

вариант	0	1	2	3	4	5	6	7	8	9
P	5	6	7	8	9	10	4	3	5	6
λε	0,0245	0,0247	0,0249	0,0251	0,0253	0,0254	0,0255	0,0256	0,0257	0,0258

31. Определите удельную теплоёмкость λ (Вт/м*С°) однородного песчаного массива, если известна величина удельной теплоёмкости c, (кДж/кг*°С) определённая на образце в лаборатории, а естественная влажность пород массива равна ω_e (%).

вариант	0	1	2	3	4	5	6	7	8	9
С	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00	1,05
$\omega_{ m e}$	8	9	10	11	12	13	14	15	16	17

32. Определите удельные диэлектрические потери q (Дж/м*с*С°) в массиве песчаника при следующих условиях распределения электромагнитной волны: частота волны f (Гц), относительная диэлектрическая проницаемость ε (ед), тангенс угла диэлектрических потерь $tg\delta$ (ед), напряжённости поля: E_1 (В/м), E_2 (В/м).

вариант	0	1	2	3	4	5	6	7	8	9
f	10 ⁵	1.5*10 ⁵	1.2*10 ⁵	10 ⁴	2*10 ⁴	2,5*10 ⁴	10 ⁵	5*10 ⁴	4*10 ⁴	1,3*10 ⁵

ε	3	4	5	6	5	4	3	4	5	6
tgδ	0,025	0,03	0,035	0,04	0,045	0,02	0,025	0,035	0,03	0,04
E ₁	80	90	100	105	95	85	90	100	105	110
E ₂	10 ⁴	10 ⁵	10 ⁶	10 ⁵	10 ⁴	10 ⁵	10 ⁶	10 ⁴	10 ⁵	10 ⁶

33. Образец горной породы площадью поперечного сечения \mathbf{S} (см 2) сложен из двух слоев. Толщина первого слоя $\mathbf{b_1}$, второго $\mathbf{b_1}$ (см), относительная диэлектрическая проницаемость породы первого слоя $\mathbf{\varepsilon_1}$, второго $\mathbf{\varepsilon_2}$. Определите относительную диэлектрическую проницаемость перпендикулярно и параллельно слоям.

вариант	0	1	2	3	4	5	6	7	8	9
s	30	32	34	36	38	40	42	46	48	50
b ₁	1	2	3	4	3	2	1	2	3	4
b ₂	3	4	5	6	4	5	3	4	6	7
$oldsymbol{arepsilon}_1$	2	3	4	5	6	7	8	7	6	5
$oldsymbol{arepsilon}_2$	8	9	10	11	12	10	12	10	11	9

34. Ширина околоштрековой бутовой полосы I_{6n} должна быть не менее 8-кратной мощности угольного пласта. Определить, будет ли это условие выполняться для штрека сечением в проходке \mathbf{S} (м²), шириной \mathbf{B} (м), проводимого по пласту угля мощностью \mathbf{m} (м). Коэффициент разрыхления породы \mathbf{K}_p) ед).

вариант	0	1	2	3	4	5	6	7	8	9
S	12	13	14	15	16	17	18	19	20	22
В	4,0	4,25	4,5	4,7	5,0	5,2	5,44	5,6	5,8	6,0
m	1,1	1,2	1,3	1,4	1,45	1,35	1,25	1,2	1,15	1,5
Kp	1,5	1,6	1,7	1,8	2,0	2,1	2,2	2,3	1,4	1,3

35. Установлено, что на контуре горной выработки порода находится в плоском напряжённом состоянии, известны σ_1 (МПа) и σ_3 (МПа). Определить аналитически и графически компоненты нормальных σ_{α} и касательных τ_{α}

напряжений в плоскости под углом α (град) к горизонтали. Сравнить полученные результаты.

вариант	0	1	2	3	4	5	6	7	8	9
σ_1	35	40	45	50	55	60	65	70	80	85
σ ₃	10	14	18	22	23	24	20	15	25	30
α	20	25	30	35	40	45	50	45	40	35

36. Определить модуль упругости E, коэффициент Пуассона v и акустическое сопротивление Z песчаника с объёмной массой ρ (кг/м³), если скорости упругой продольной волны в нём Vp (км/с), а поперечной Vs (км/с).

вариант	0	1	2	3	4	5	6	7	8	9
ρ	2400	2450	2500	2550	2600	2650	2700	2600	2500	2450
Vp	6,0	6,5	5,5	5,0	4,5	5,0	4,7	4,4	4,9	6,3
Vs	4,0	4,2	3,6	3,5	2,7	3,3	2,8	2,6	3,2	4,6

37. Найти суточный дебит метана в дегазационную скважину ΔQ (м³/сут), если активная поверхность скважины S_a составляет (м²), градиент давления $\Delta P/\Delta x$ (МПа/м), коэффициент проницаемости угольного пласта $K_{np} = 0.6*10^{-13}$ м², а динамическая вязкость метана $\eta = 10^{-5}$ Па*с.

вариант	0	1	2	3	4	5	6	7	8	9
Sa	8	9	10	11	12	13	14	15	16	12
ΔΡ/Δχ	0,17	0,18	0,19	0,20	0,21	0,22	0,23	0,24	0,25	0,26
К _{пр} *10 ¹³	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,1	1,2	1,3
η	10 ⁻⁵									

38. Определить величину внутренних термических напряжений σ_T (МПа)в массиве пород, где проводится выработка, если температура массива уменьшается с T_1 (°C) до T_2 (°C), известен модуль упругости E (ГПа) и коэффициент линейного теплового расширения α (1/°C).

вариант	0	1	2	3	4	5	6	7	8	9
T ₁	43	44	45	46	47	48	49	50	51	52
<i>T</i> ₂	23	24	25	26	27	26	25	24	23	22

E	4,5	5,0	5,5	6,0	6,5	7,0	7,5	8,0	8,5	9,0
α*10 ⁵	2,29	2,31	2,33	2,35	2,37	2,39	2,41	2,43	2,45	2,47

39. При испытании образцов песчаника определены пределы прочности на одноосное сжатие $\sigma_{cж}$ (МПа) и растяжение σ_p (МПа). Определить аналитически и графически величину сцепления C (МПа) и угол внутреннего трения ϕ (град) породы, построить паспорт прочности упрощённым методом

вариант	0	1	2	3	4	5	6	7	8	9
$\sigma_{c imes}$	60	65	70	80	85	90	95	100	87	78
σ_p	8	9	10	11	12	14	15	17	9	8

40. При испытании образца песчаника определены величины предела упругости σ_e (МПа), предела прочности $\sigma_{cж}$ (МПа), упругой деформации ε_e (ед) , разрушающей деформации ε_p (ед). Определить модуль упругости E (МПа), модуль пластичности E_{nn} (МПа), модуль деформации $E_{\partial e \phi}$ (МПа) и полную удельную работу разрушения W_p (Дж/м³) с учётом пластической деформации. Изобразить график нагружения образца.

вариант	0	1	2	3	4	5	6	7	8	9
$\sigma_{ m e}$	30	35	40	45	50	55	60	65	70	75
$\sigma_{c imes}$	50	55	60	65	70	75	80	85	90	95
$\varepsilon_{\rm e}^*10^3$	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2,0	2,1
ε_p *10 ³	2,5	2,6	2,7	2,8	2,9	3,0	3,1	3,2	3,3	3,4

ВЫБОР ВАРИАНТОВ ЗАДАЧ ДЛЯ ИНДИВИДУАЛЬНОЙ КОНТРОЛЬНОЙ РАБОТЫ

Первая цифра варианта	Номера задач											
0	1	3	14	16	18	30	35	40				
1	2	5	9	13	26	29	34	39				
2	2	4	8	11	19	21	33	38				
3	4	15	19	22	28	30	32	37				
4	5	7	13	14	15	25	31	36				
5	7	11	19	20	22	24	33	36				
6	1	13	16	21	26	32	34	37				
7	3	4	8	18	20	23	35	38				
8	9	15	17	21	32	27	36	39				
9	10	12	17	19	23	28	37	40				

Вторая цифра варианта соответствует варианту исходных данных в самой задаче (кроме задачи №18)

ПЕРЕЧЕНЬ РЕКОМЕНДОВАННОЙ ЛИТЕРАТУРЫ

- Ржевский В.В., Новик Г.Я. Основы физики горных пород. М.: Недра, 1984.
 233 с.
- 2. Алексеенко С.Ф., Мележик В.П. Физика горных пород. Горное давление. К.: Вища школа, 1987. – 280 с.
- 3. Алексеенко С.Ф., Мележик В.П. Физика горных пород. Горное давление: Сб. задач и упражнений К.: Вища шк. Головное изд-во, 1988. 248 с.
- 4. Соболев В.В., Стариков А.П. Физика горных пород: Учебник для вузов. Донецк: Донбасс, 2012. 456 с.
- 5. Соболев В.В., Скобенко А.В., Иванчишин С.Я. Физика горных пород. Учебное пособие для вузов. – Днепропетровск: Полиграфист, 2003. – 255 с.
- 6. Механика горных пород: В 2 т., Т.1. /Под общей ред. С.С. Гребенкина, Н.Н. Гавриша. Донецк: ДонНТУ. 2004. 169 с.
- 7. Баклашов И.В., Картозия Б.А. Механические процессы в породных массивах: Учебник для вузов. М.: Недра, 1986. 272 с.
- 8. Баклашов И.В., Картозия Б.А. Механика подземных сооружений и конструкции крепей. М.: Недра, 1984. –415с.
- 9. Турчанинов И.А., Иофис М.А., Каспарьян Э.В. Основы механики горных пород. Л: Недра, 1989. 488 с.
- 10. Лабораторный практикум по курсу «Механика горных пород» для студентов, обуч. по напр. подг. 050301 «Горное дело» / Сост. С.В. Подкопаев, Н.Н. Гавриш, В.И. Каменец и др. -Донецк: ДонНТУ, 2012. 48 с.