ИССЛЕДОВАНИЕ КАЧЕСТВА НОВЫХ И ВОССТАНОВЛЕННЫХ ДЕТАЛЕЙ ГИДРАВЛИКИ ШАХТНОЙ КРЕПИ

Желтобрюх Л.О. (*MT-10м*)* Донецкий национальный технический университет

В условиях экономического кризиса главной проблемой на машиностроительных заводах является сохранение и восстановление вышедших из строя деталей. Восстановление вышедших из строя при первичной эксплуатации деталей гидравлики требует минимальных капиталовложений и не требует сложного технологического оборудования, однако технология восстановительной обработки требует совершенствования. Восстановление перспективно в тех случаях, когда в результате эксплуатации детали слабо изнашиваются, но их необходимо снимать с производства из—за несоответствия размеров. В связи с этим целью данной работы является усовершенствование процесса восстановления рабочих размеров трущихся деталей гидравлики шахтной крепи.

Для этого использовали детали гидравлики шахтной крепи из стали 30ХГСА: плунжер, шток, цилиндр, подвергающиеся при эксплуатации трению и износу по рабочей поверхности. Износ, в среднем, составлял 0,22 - 0,7 % от номинального размера детали. Для исследования взяли образцы, вырезанные из детали цилиндра, в виде кубиков с номинальным размером ребра 10 мм с исходной феррито – перлитной микроструктурой. Рабочие размеры образцов измеряли в трех направлениях ($a \times b \times c$); полученные данные приведены в таблице 1. Микротвердость измеряли на приборе ПМТ-3 при нагрузке 0,5 Н и она составила в исходном состоянии 1500 H/мм². Затем проводили закалку в печи СНОЛ – 1,6.2,5.1/11 от температуры нагрева 880 ± 10 °C с охлаждением в масле. Полученная твердость составила 57 ± 2°C HRC. Микроструктуру определяли с помощью металлографического микроскопа NU – 2 при увеличении 350 - она представляет собой мартенсит закалки. Далее проводили отпуск при температуре 540 ± 10 °C с охлаждением в воде. Микроструктура состояла из сорбита отпуска при твердость $33 \pm 2^{\circ}$ С HRC. Перед проведением азотирования поверхность образцов шлифовали, полировали и обезжиривали ацетоном. Шероховатость измеряли на профилометре 296: она составила Ra= 0,09...0,11 мкм при отсечке шага 0,8 мм и длине трассы 3 мм.

Смесь для обмазки состояла из жидкого стекла (5 %); мочевины (93-92 %) (величина частиц 1...5 мкм); Al_2O_3 (2-3 %); разделение мочевины на фракции осуществляли с помощью набора сит. При азотировании на предварительно подготовленную поверхность образцов наносили обмазку слоем 2-3 мм, окисляли поверхность с одновременным просушиванием при температуре $140\,^{\circ}$ C в течение 30-40 минут, в герметично закрытом тигле. Далее нагревали до $540\pm10\,^{\circ}$ C в печи и выдерживали 5 часов, с охлаждением в воде. Все образцы зачищали со всех сторон наждачной бумагой.

^{*}Руководитель – д.т.н., профессор Алимов В.И.

Размеры, полученные после закалки, отпуска и азотирования, приведены в таблице 1.

Таблица 1 – Изменение размеров в зависимости от вида обработки,	
	1.111.1
таолина т — изменение размеров в зависимости от вида обработки.	IVLIVI

	Измеря-	Исходные	Размеры после обработки, мм			Прирост
Номер образца	емые	размеры				Прирост размеров,
	пара-	образцов,	Закалка	Отпуск	Азотирование	размеров, мм / %
	метры	MM				WIWI / /U
1	a	10,114	10,12	0,11	10,32	0,206/1,996
	b	10,165	10,17	10,161	10,39	0,225/2,17
	c	10,147	10,15	0,144	10,41	0,263/2,59
2	a	10,334	10,35	0,331	10,58	0,246/2,38
	b	10,164	10,168	0,161	10,33	0,166/1,63
	c	10,185	10,19	0,18	10,36	0,175/1,72

Из таблицы 1 видно, что после азотирования происходит прирост размеров, что может быть связано с увеличением удельного объема фаз в поверхностном слое и составляет в пределах 0,166-0,263 мм от исходного размера. Для выявления состава азотированного слоя проводили изучение микроструктуры, используя различные виды травителей. Первый из травителей состоял из серной кислоты и этилового спирта (А); второй - пикриновой кислоты и этилового спирта (Б). Исследование микроструктуры и глубины азотированного слоя осуществляли на металлографическом микроскопе NU-2 и МИМ-7. Микроструктура, выявленная первым травителем, приведена на рис. 1 а, вторым — на рис. 1 б. Полученная глубина азотированного слоя составила в среднем 0,03-0,06 мм.

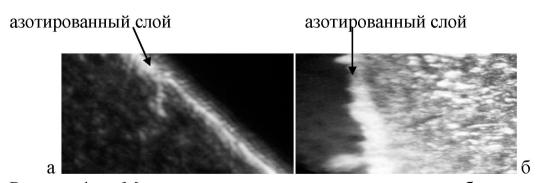


Рисунок 1 а - Микроструктура азотированного слоя на образцах из стали $30 \text{X}\Gamma \text{CA}$, выявленная травителем A, $\times 450$; б - Микроструктура азотированного слоя на образцах из стали $30 \text{X}\Gamma \text{CA}$, выявленная травителем Б, $\times 450$

Азотирование в обмазках может найти применение не только для деталей гидравлики, но и для восстановления рабочих размеров точного металлорежущего инструмента; восстановление размеров происходит, вероятно из — за образования фаз с большим удельным объемом.