91

THE METHOD OF STRENGTHENING OF STREAM CIPHERS FOR
USING THE SAME KEY MULTIPLE TIMES

Trunov D., master, d.n.trunov@gmail.com
Self-employed person, Pokrovsk, Ukraine

There are two main types of ciphers used in modern encryption: block ciphers
that encrypt data in blocks of a given size as well as stream ciphers, in which the
encryption of individual bits or bytes occurs independently of each other [1].
Stream ciphers can be quite simple, convenient and reliable, but have a significant
drawback: repeated use of the same encryption key significantly reduces the
strength of the cipher.

In general, a stream cipher encryption scheme might look like this [2]: ¢; =
pi XOR k;, where ¢; is the current single element of ciphertext, p; is the element of
plaintext, k; is the key stream element, and XOR is the "exclusive or" operation.
For ciphers like a one-time pad [3], the key stream k must be truly random, which
IS rather impractical. For other ciphers, such as Salsa20 [4], the key stream is
pseudo-random and is generated according to some algorithm and a given main
key.

The danger in such schemes is, for example, that if an attacker has at least
one pair of the plaintext p and the ciphertext c, it is very easy to obtain the key: k
= p XOR c. And then he can decrypt all messages encrypted with the same key: p
= ¢ XOR k. To avoid this, it is proposed to consider a method for strengthening
stream ciphers in the form of an additional algorithm that makes implicit the de-
pendence between the elements of streams p, ¢ and k.

Let's start with an example. Suppose there are two stream ciphers with key
streams k and I. Then the encryption of a single element would look like this: ¢; =
pi XOR ki XOR Ii. Having c; and p; one can only get the result ki XOR I;, but not k;
and |; separately. As long as the XOR operation is applied, it does not make much
sense, but if we apply some more complex function like F(p;, ki, I;), then extracting
ki and I; from it can be quite problematic.

To implement such a function in the proposed method we need: some condi-
tional stream cipher SCipher, byte arrays M for source/encrypted data and K for
key byte stream, byte arrays T for the substitution table and R for the reverse sub-
stitution table (256 bytes each), and an auxiliary hash bye H. We also need auxil-
iary bytes B, S, E, and the cycle counter i.

Consider initializing the algorithm on a pseudocode and assume that the SCi-
pher(K) function generates a stream of keys of the required length and saves it to
the array K. Initialization begins with the preparation of K and H:

SCipher(K); // 256 bytes
H=0;
This is followed by a loop of initial filling of the substitution table:

®opym «TAK», lonHTY, IlokpoBcek, 2021

92

T[i] =i; // for i = 0..255
Next is a loop of table T mixing and hash calculating:

B =TIil;

T = TIKLOITE;

TIK[I = B;

H = (H XOR K[i]) >>> 1; // here >>> is cyclic shift to the right

At the end there is a loop to form the reverse table of substitutions R:

RITOIT =1

Having a mixed substitution table T, its corresponding reverse table R and
some hash value H we can start the encryption and decryption. To do this we need
to get a new array of keys K:

SCipher(K);

The encryption of the array M in this scheme involves not only the XOR op-
eration with the keys K[i], but also XOR with the hash H, encryption using the
substitution table T, as well as a new change of the hash H and exchange of two
elements of the table T by dynamically determined addresses. Encryption loop on
the pseudocode:

S = M[i] XOR K[i];
E = (T[S] XOR H) <<< 1; /[here <<< is cyclic shift to the left

MIi] = E;

H = (T[E] XOR T[H]) <<< 3; // new hash value

B =T[H]; /Il exchange of two elements of the table T
T[H] = T[S];

T[S] = B;

In the decryption loop, we only need to change the order of operations over
the elements of the array M and use the inverse table R instead of T:

E =M[i];
S=(E>>>1) XOR H;
S =R[S];

MI[i] = S XOR K[il:

Also before the exchange in the table T we need to exchange in the table R:

®opym «TAK», lonHTY, IlokpoBcek, 2021

93

B =R[T[HII;
RIT[H]] = RIT[S]]:
RIT[S]] =B;

The idea is that even having the original and encrypted values of any element
M[i], it is impossible to reliably determine the exact values of the current hash H,
the key K[i] and the entire table T or at least a part of it. Even more so, it is im-
possible to reliably establish these values, having several ciphertexts encrypted
with the same key, but not having at least one plaintext.

Is it possible to somehow save all possible combinations of H, K[i] and sub-
stitutions E = T[S] and, having enough pairs of ciphertexts and plaintexts, gradu-
ally weed out the unfit variants and soon come to the only correct one? Theoreti-
cally, it is possible. However, it may require so many computational resources
that it would be easier to go through all the possible variants of the main key of
the SCipher algorithm (brute force attack on SCipher).

Thus, if we initially take a strong stream cipher as SCipher, then strengthen-
ing it with the above method (or a similar one) will allow not only to safely use
the same key multiple times, but also to keep the convenience and relative sim-
plicity of the byte-by-byte stream cipher.

References

1. Gary C. Kessler. An Overveiw of Cryptography. — URL: https://www.garykess-
ler.net/library/crypto.html

2. Stream cipher: Wikipedia, the free encyclopedia. — URL: https://en.wikipe-
dia.org/wiki/Stream_cipher

3. One-time pad: Wikipedia, the free encyclopedia. — URL: https://en.wikipe-
dia.org/wiki/One-time_pad

4. Daniel J. Bernstein. The Salsa20 family of stream ciphers: Department of Mathematics,
Statistics, and Compute science. The University of Illinois at Chicago. — URL:
https://cr.yp.to/snuffle/salsafamily-20071225.pdf

AHoOTaLA

Po3risiHyTo MeTO | MOCHIEHHS MOTOKOBUX MU(PIB Y BUIIISIL 10AATKOBOIO aJlfOPUTMY,
10 YCKJIAIHIOE 3JIaMyBaHHs IM(pY Mmpu OararopazoBOMy 3aCTOCYBaHHI OJTHOTO M TOTO X
kiroya mugpysanHs. [lokazaHo, 1110 MOXKIIMBHIN 37I0M TaKOTO aAropuTMy OyJie CKIaJHIIINM 32
MeTo Irpy0oi CHIIM BITHOCHO JIMIIE TOTOKOBOTO MHU(PY.

KittouoBi cioBa: moTokoBHi mudp, MOCUIEHHS, K04 HIU(PPYBAaHHS, 37I0M.

AHHOTAIIUSA

PaccmoTpen MeTo 1 yCHiIeHHs TOTOKOBBIX IMIM(POB B BUJIE JOTOTHUTEIHHOTO AJITOPUTMA,
YCIIOKHSOIIETO B3JIOM IKdpa Mpy MHOTOKPATHOM MPUMEHEHUU OJHOTO U TOTO e KIoua
mdposanus. [Toka3zaHo, YTO BO3MOKHBIIM B3JIOM TaKOro alroputMma OyJeT CloKHEe MeToAa
rpy0OO# CHIIBI IO OTHOIIIEHHUIO TOJIBKO K TOTOKOBOMY IIU(DPY.

KiroueBwie ciioBa: mOTOKOBBIN MU(p, yeuiieHue, KItod mudpoBaHus, B3JIOM.

®opym «TAK», lonHTY, IlokpoBcek, 2021

94

Abstract

A method of strengthening stream ciphers in the form of an additional algorithm is con-
sidered. The method complicates cipher breaking when the same cipher key is used multiple
times. It is shown that the possible breaking of such an algorithm will be more complicated than
the brute force method in relation to the stream cipher only.

Keywords: stream cipher, strengthening, encryption key, breaking.

®opym «TAK», lonHTY, IlokpoBcek, 2021

