Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://ea.donntu.edu.ua/jspui/handle/123456789/29222
Назва: Introduction of an irregular grid with respect to the spatial coordinate for the method of lines
Автори: Dmytriyeva, Olga
Huskova, Nadiia
Ключові слова: irregular grid
direct method
Cauchy problem
Chebyshev nodes
parallel block methods
Дата публікації: 2018
Короткий огляд (реферат): The paper deals with the problem of reducing evolutionary partial differential equations to systems of ordinary differential equations with discretization over space. It is assumed that the obtained systems will be implemented iparallel using the method of lines. The questions devoted to the parallel control of the step of time integration on the basis of collocation block methods are considered. For the spatial coordinate, an irregular grid with a Chebyshev arrangement of nodes is introduced, which makes it possible to improve the accuracy of the results without significantl y increasing the computational complexity. The obtained results are confirmed by computer experiments for partial parabolic partial di fferential equations with different types of boundary condi tions and stiffness parameters.
URI (Уніфікований ідентифікатор ресурсу): http://ea.donntu.edu.ua/jspui/handle/123456789/29222
Розташовується у зібраннях:Наукові публікації кафедри прикладної математики та інформатики

Файли цього матеріалу:
Файл Опис РозмірФормат 
Olga Dmytriyeva, Nadiia Huskova.pdfThe paper deals with the problem of reducing evolutionary partial differential equations to systems of ordinary differential equations with discretization over space. It is assumed that the obtained systems will be implemented iparallel using the method of lines. The questions devoted to the parallel control of the step of time integration on the basis of collocation block methods are considered. For the spatial coordinate, an irregular grid with a Chebyshev arrangement of nodes is introduced, which makes it possible to improve the accuracy of the results without significantl y increasing the computational complexity. The obtained results are confirmed by computer experiments for partial parabolic partial di fferential equations with different types of boundary condi tions and stiffness parameters.860,18 kBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.