и редуплика аммония, индикатор — сульфат железа. Навеска сульфаталюминия составляла 0.02 М. В случае кондуктометрического метода — 0.002 М. Дисперсия образцов по методу [29]. Квадраты скорости гидролиза рассчитывали по уравнению первого порядка и определяли как среднее из 12—16 измерений. Активационные параметры рассчитаны по уравнению Аррениуса. Оценка точности кинетических измерений производилась методом математической статистики [21] при надежности 0.95.

Литература

Поступило 6 VII 1974

Львовский
политический институт,
Донецкий
политический институт

ИССЛЕДОВАНИЕ АЦИЛИРОВАНИЯ ФЕНОЛОВ И СИПРОТОВ АЛКАНСУЛЬФОХЛОРИДАМИ В ПРИСУТСТВИИ ТРЕТИЧНЫХ АМИНОВ

П. В. Визгерг, Е. П. Нахов, Ю. Г. Скрыпник,
М. И. Стародубцева

При ацилировании спиртов и феноолов хлорангидридами сульфонокислот в присутствии третичных аминов много место дают каталитических цикла — общесложной и нуклеофильной, преобладание того или иного из них зависит от строения реагентов, основности катализатора и природы растворителя. При конкурирующем ацилировании феноль и его замещенных предпочтительно ацилируются феноль с электролитокатализаторами заместителями.

Несмотря на практическую важность процессов ацилирования спиртов и феноолов хлорангидридами сульфонокислот, [1], тонкие особенности процессов этирификации, особенно в присутствии катализаторов, изучены недостаточно [2]. В последнее время появились работы по изучению механизма ацилирования фенолов и спиртов хлорангидридами карбоновых кислот в присутствии третичных аминов [2]. Показано, что в зависимости
от строения реагентов, третичного амина и условий проведения процесса может наблюдаться нуклеофильный или основной катализ или преобразование одного из других.

В настоящей работе на примере изучения конкурирующих реакций ацилирования смесей фенола и спиртов, фенола и его замещенных пентансульфокислотами (ПСХ) в присутствии третичных аминов мы попытались установить влияние химической природы гидроксисодержащего реагента, основности катализатора и природы растворителя на соотношение общеосновного и нуклеофильного катализа в процессе ацилирования.

Экспериментальная часть

Реактивы и растворители очищены по описанным в литературе методикам, их постоянство соответствовало литературным данным, пентансульфокислота (ПСХ) получена по методике [8]. Ацилирование проводили в термостатируемой колбе с боковым отростком при 20 ± 0,1° по следующей методике: раствор фенола, спирта (или замещенного фенола) и третичного амина быстро смешивали с раствором ПСХ, начальная концентрация которого составляла 0,4 М. Через 1 час термостабилизацию прекращали, отделяли хлористоводородную соль амина и смесь ацилировали на газо-жидкостном хроматографе JXN-7A с программируемым управлением, детектор пламенно-ионизационный, температура 180°, длина колонки 3 м, заполнена 5% силикагеля SE-30 на хроматоне N-AW, газ-носитель — гелий.

Поскольку в контрольных опытах суммарная конверсия ПСХ была близка к 100%, в большинстве случаев мы определяли лишь количество фенилпентансульфоната (ФПС) и алкилпентансульфоната. Каждый опыт проводили не менее 2 раз, при этом во всех случаях наблюдали совпадение результатов.

Обсуждение результатов

Ацилирование в избытке гидроксисодержащих реагентов протекает по уравнению:

\[
AC_{6}H_{5}OH + C_{6}H_{13}SO_{4}Cl \xrightarrow{K_{R}} \xrightarrow{HCl} xC_{6}H_{4}O_{2}SO_{4}C_{6}H_{13} + (A - x)C_{6}H_{5}OH
\]

где \(x\) — степень превращения фенола, \(A \geq 1\).

При проведении ацилирования в избытке гидроксисодержащих реагентов можно допустить следующее равенство:

\[
q = 1 - \frac{x}{k_{0} + m \cdot k_{c}^{'}}
\]

где \(k_{0}\) и \(k_{c}^{'}\) — константы скорости некатионной и катаионной реакции соответственно, \(m\) — количество третичного амина, \(k_{c}^{'}\) — константа скорости ацилирования спирта или замещенного фенола, \(k_{c}^{'}\) — константа скорости ацилирования фенола. Так как \(k_{0} \ll k_{c}^{'}\) (\(k_{0}^{2} = 7.69 \cdot 10^{-4}\) при ацилировании метанола этансульфокислотой и на порядок меньше при ацилировании фенола [8]), то величина \(q\) дает представление о соотношении скоростей ацилирования фенола и спирта (замещенного фенола).

На основании данных рис. 1 и табл. 1 можно заключить, что в случае применения для ацилирования (диоксан, \(A = 1\)) сильного основания (три-
Таблица 1

<table>
<thead>
<tr>
<th>Составление (\text{PhOH} : \text{CH}_3\text{OH} : \text{амин} : \text{ПСК})</th>
<th>Триэтиламин</th>
<th></th>
<th></th>
<th>\text{Прирдин}</th>
<th>\text{Прирдин}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 : 1 : 1 : 1</td>
<td>49.8/50.2</td>
<td>41.8</td>
<td>1.39</td>
<td>19.0/84.0</td>
<td>14.5</td>
</tr>
<tr>
<td>2 : 2 : 1 : 1</td>
<td>63.3/36.7</td>
<td>56.6</td>
<td>0.77</td>
<td>35.5/64.5</td>
<td>23.4</td>
</tr>
<tr>
<td>2.5 : 2.5 : 1 : 1</td>
<td>70.0/30.0</td>
<td>62.9</td>
<td>0.59</td>
<td>41.2/53.8</td>
<td>34.0</td>
</tr>
<tr>
<td>4 : 4 : 1 : 1</td>
<td>79.3/20.7</td>
<td>73.8</td>
<td>0.35</td>
<td>54.5/45.4</td>
<td>48.0</td>
</tr>
<tr>
<td>6 : 6 : 1 : 1</td>
<td>79.5/20.5</td>
<td>74.0</td>
<td>0.35</td>
<td>63.0/37.0</td>
<td>55.3</td>
</tr>
</tbody>
</table>

Примечание. МПС — метилпентансульфонат, ФПС — фенилпентансульфонат.

Таблица 2

Влияние основности катализатора на конверсию фенола при ацилировании реакционной смеси (соотношение \(\text{PhOH} : \text{CH}_3\text{OH} : \text{амин} : \text{ПСК} \) равно \(2.5 : 2.5 : 1 : 1 \))

<table>
<thead>
<tr>
<th>Катализатор</th>
<th>(pK_a (\text{H}_2\text{O}))</th>
<th>Состав продуктов ацилирования ФПС/МПС, %</th>
<th>Конверсия фенола, %</th>
<th>(q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Трибутиламин</td>
<td>41.23</td>
<td>74.0/26.0</td>
<td>67.0</td>
<td>0.49</td>
</tr>
<tr>
<td>Триэтиламин</td>
<td>10.87</td>
<td>70.0/30.0</td>
<td>62.9</td>
<td>0.59</td>
</tr>
<tr>
<td>Прирдин</td>
<td>5.23</td>
<td>41.2/58.3</td>
<td>34.0</td>
<td>1.95</td>
</tr>
<tr>
<td>Трибутиламин</td>
<td>8.2</td>
<td>7.7/82.3</td>
<td>5.8</td>
<td>0.77</td>
</tr>
<tr>
<td>Диэтиламин</td>
<td>44.25</td>
<td>63.3/36.7</td>
<td>56.0</td>
<td>1.95</td>
</tr>
<tr>
<td>Пропирдин</td>
<td>11.20</td>
<td>60.0/40.0</td>
<td>51.9</td>
<td>0.93</td>
</tr>
<tr>
<td>Аммиак</td>
<td>9.25</td>
<td>80.2/39.8</td>
<td>52.4</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Этиламина) конверсия фенола и метанола оказывается близкой и даже конверсия метанола несколько превышает конверсию фенола, однако с увеличением избытка гидроксилсодержащих реагентов конверсия фенола резко повышается и при 3—4-кратном избытке (\(A = 3—4 \)) конверсия и величина \(q \) достигает постоянного значения.

![Diagram](image)

Рис. 1. Зависимость конверсии фенола в фенилпентансульфонат от концентрации гидроксилсодержащих реагентов (\(A \)) в реакционной смеси.

1, 2 — в приложении прирдина и триэтиламин соответственно. Меньше соотношение фенол : метанол : амин : пентансульфохлорид приведено по данным табл. 1.

В случае прирдина, более слабого основания (\(pK_a = 5.23 \)), вплоть до соотношения \(4 : 4 : 1 : 1 \) (табл. 1) преобладает конверсия метанола, т. е. нуклеофильный катализ. При увеличении в реакционной смеси фенола и спирта величина \(q \) непрерывно уменьшается, что свидетельствует о постоянном увеличении вклада общего основного катализта.

\[
\text{RSO}_2\text{Cl} + \text{R'OH} \xrightleftharpoons{} [\text{RSO}_2 \cdot \text{NR}_3^+] \cdot \text{Cl}^- + \text{R'O}H \xrightarrow{4} \text{R'O}H \cdot \text{NR}_3^+ + \text{RSO}_2\text{Cl}^- \rightarrow \text{RSO}_2\text{OR'} + \text{R'}\text{N} \cdot \text{HCl}
\]

Большое влияние на соотношение нуклеофильного и общекислотного потока оказывает основность третичных аминов (табл. 2). С увеличением
основности амина конверсия фенола начинает преобладать в реакции ацилирования, но-видимому за счет преобразования общеосновного катализатора. При наличии нуклеофильного катализатора стерически препятствующих в третичных аминах [1, 2] должны привести к снижению скорости ацилирования, и выход фениленгексаноловат в случае пиридин должен быть значительно выше, чем в случае третичных аминов.

Однако мы наблюдаем обратную картину — в присутствии пирилина выход фениленгексаноловата снижается в 2 раза, что свидетельствует также в пользу общего основного катализатора. Дополнительное пространственное экранирование азота в случае триэтиламина приводит к резкому снижению конверсии фенола.

На конкурирующий конверсию фенола и метанола значительное влияние оказывает природа растворителя, его склонность к физической или химической сольватации (табл. 3).

Таблица 3
Влияние природы растворителя на относительную реакционную способность фенола и метанола при ацилировании ПСХ в присутствии триэтиламина (мольное соотношение фенол : метанол : триэтиламин : ПСХ равно 1 : 1 : 1 : 1)

<table>
<thead>
<tr>
<th>Растяжители</th>
<th>Диэлектрическая постоянная, е</th>
<th>Хроматографический слой, ФЭС/МПС, %</th>
<th>Конверсия фенола, %</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гексан</td>
<td>1.9</td>
<td>85.0/15.0</td>
<td>80.5</td>
<td>0.24</td>
</tr>
<tr>
<td>Бензол</td>
<td>2.38</td>
<td>84.5/15.5</td>
<td>80.0</td>
<td>0.25</td>
</tr>
<tr>
<td>Четыреххлористый углерод</td>
<td>2.29</td>
<td>83.3/16.7</td>
<td>78.3</td>
<td>0.28</td>
</tr>
<tr>
<td>Ацетон</td>
<td>2.70</td>
<td>87.5/32.5</td>
<td>60.0</td>
<td>0.67</td>
</tr>
<tr>
<td>Эфир</td>
<td>4.5</td>
<td>68.5/33.5</td>
<td>69.0</td>
<td>0.69</td>
</tr>
<tr>
<td>Дюксан</td>
<td>2.21</td>
<td>49.8/50.2</td>
<td>41.8</td>
<td>4.30</td>
</tr>
</tbody>
</table>

В гексане, бензоле, четыреххлористом углероде — апротонных растворителях — в основном создаются благоприятные предпосылки для протекания реакции по схеме общеосновного катализатора. В растворителях, способных образовывать водородные связи (эфир, дюксан), конверсия фенола значительно уменьшается за счет того, что устойчивость комплекса спирт—амин (ионаной пары PO—NHР₃) уменьшается, в связи с этим снижается доля основного катализатора и увеличивается возможность протекания реакции по типу нуклеофильтного катализатора. При ацилировании в дюксане преобладает нуклеофильтный катализатор.

Существенное влияние на выход продуктов при конкурирующем ацилировании спиртов оказывает природа спиртов (табл. 4).

Таблица 4
Конкуррующее ацилирование фенола и спиртов при соотношении РnOH : RnОH : NEt₃ : ПСХ, равно 2.5 : 2.5 : 1 : 1

<table>
<thead>
<tr>
<th>R=H</th>
<th>R=CH₃</th>
<th>Р kₐ</th>
<th>Состав продуктов ацилирования ФЭС/МПС, %</th>
<th>Конверсия фенола, %</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃OH</td>
<td>15.5</td>
<td>70/30</td>
<td>62.9</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>CH₃CH₂OH</td>
<td>15.9</td>
<td>87/17</td>
<td>79.5</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>CH₃CH₂OH</td>
<td>16.0</td>
<td>81.3/18.7</td>
<td>80.0</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>CH₃CH₂OH</td>
<td>—</td>
<td>83.0/17.0</td>
<td>81.7</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>CH₃CH₂OH</td>
<td>16.0</td>
<td>80.2/19.8</td>
<td>82.4</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>CH₃CH₂OH</td>
<td>—</td>
<td>80.3/19.7</td>
<td>77.5</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>CCH₃CH₂OH</td>
<td>14.31</td>
<td>74.2/25.8</td>
<td>73.0</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>CCH₃CH₂OH</td>
<td>13.55</td>
<td>73.5/26.5</td>
<td>70.0</td>
<td>0.43</td>
<td></td>
</tr>
</tbody>
</table>
С увеличением длины алкильной цепи в спиртах концентрация фенола значительна, а затем практически не изменяется. С увеличением кислотности спирта концентрация фенола снижается (табл. 4).

При переходе от конкурирующего ацилирования спиртов и фенола к фенолу и его замещенным влияние pH фенолов заметно описано на соотношении нуклеофильного и общесоединительного катализа (табл. 5).

Таблица 5

Результаты конкурирующего ацилирования фенолов XH₃C₄OH при статистометрическом соотношении реагентов C₆H₅OH : XH₃C₄OH : NBE₅ : ПСХ

<table>
<thead>
<tr>
<th>X в XC₄H₃OH</th>
<th>pHₐ (H₂O)</th>
<th>pHₐ (ДМСО)</th>
<th>Состав продукта ацилирования ФПС/ХАПС, %</th>
<th>Концентрация фенола, %</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-Cl₂</td>
<td>4.07</td>
<td>—</td>
<td>24.2/75.8</td>
<td>28.5</td>
<td>2.50</td>
</tr>
<tr>
<td>4-NO₂</td>
<td>7.15</td>
<td>10.1</td>
<td>29.4/70.6</td>
<td>33.3</td>
<td>2.03</td>
</tr>
<tr>
<td>4-Cl</td>
<td>9.38</td>
<td>12.7</td>
<td>37.5/62.5</td>
<td>40.8</td>
<td>1.45</td>
</tr>
<tr>
<td>4-OMe</td>
<td>10.21</td>
<td>14.7</td>
<td>38.0/62.0</td>
<td>41.0</td>
<td>1.44</td>
</tr>
<tr>
<td>4-Me</td>
<td>10.14</td>
<td>14.4</td>
<td>46.3/53.7</td>
<td>47.8</td>
<td>1.09</td>
</tr>
<tr>
<td>4-f-Bu</td>
<td>10.23</td>
<td>13.9</td>
<td>46.4/53.6</td>
<td>51.9</td>
<td>0.93</td>
</tr>
<tr>
<td>2-Me</td>
<td>10.28</td>
<td>—</td>
<td>64.2/35.8</td>
<td>65.5</td>
<td>0.53</td>
</tr>
<tr>
<td>3-Me</td>
<td>10.04</td>
<td>—</td>
<td>57.4/42.6</td>
<td>50.9</td>
<td>0.69</td>
</tr>
<tr>
<td>3-Cl</td>
<td>9.92</td>
<td>—</td>
<td>34.9/65.1</td>
<td>38.1</td>
<td>1.62</td>
</tr>
<tr>
<td>2,4-(NO₂)₂</td>
<td>4.11</td>
<td>—</td>
<td>58.0/42.0</td>
<td>50.5</td>
<td>0.98</td>
</tr>
</tbody>
</table>

С ростом кислотности замещенных фенолов незамененного фенола снижается особенно в случае 2,4-дихлорфенола, т. е. чем больше фенол, тем легче протекает ацилирование. Поэтому электроноакцепторные заместители в феноле благоприятствуют, а электронодонорные — замедляют реакцию.

На основании величин q (табл. 5), полученных при изучении конкурирующего ацилирования фенола и его пара- и мета-замененных нами

![Diagram](https://via.placeholder.com/150)

Рис. 2. Зависимость lg q от констант заместителей \(a \) в реакции ацилирования замещенных фенолов нитрасульфохлоридом.

![Diagram](https://via.placeholder.com/150)

Рис. 3. Зависимость lg q от pHₐ фенолов в реакции ацилирования фенолов нитрасульфохлоридом.

вычисления параметров корреляционного уравнения, показывающие зависимость величины q от констант заместителей \(a \) в соответствии с уравнением \(\lg q = a \gamma \). Графическое построение lg q — \(a \) (рис. 2) и lg q — pHₐ, фенолов (рис. 3) дает ломаную линию, последнее показывает, что механизм ацилирования в значительной мере определяется химической природой исходных реагентов.

Увеличение реакционной способности с ростом кислотности [10] фенолов указывает на то, что реакция протекает по схеме общеосновного катализа. При переходе от более кислых фенолов к менее кислым начинает преобладать процесс нуклеофильной атаки амина на серу сульфогрупп. Для орто-замененных фенолов характерна низкая реакционная способность.

1898
К КИНЕТИКЕ ВЗАИМОДЕЙСТВИЯ АРИЛГАЛОГЕНОФОРМИТАТОВ С АРИЛАМИНАМИ

Л. М. Литвиненко, А. С. Сащенко, Л. Я. Галущко

Изучена кинетика взаимодействия фенилхлорформиата с амином в бензоле при температуре 25, 35 и 45°, а нитробензоле при 25°, а также фенилбромформиата в бензоле при 25°. Показано, что реакция ускоряется при введении поляриности среды, изменяется природа уходящей группы апилирующего агента от Cl к Br. Высказана гипотеза о влиянии полярности на скорость реакции.

В предыдущей работе [1] изложены результаты по изучению кинетики взаимодействия между замещенными в ароматических ядрах арилхлорформиатами и ариламинами в бензольном растворе. При этом найдены закономерности, связанные с природой протекания процессов с изменением структурных факторов. Было показано, что наличие метокарбонового атома кислорода между арильным ядром и группой COCl вносит определенную специфику в реакционную способность арилхлорформиатов в сравнении с аналогичными арилбромидами.

Настоящее сообщение содержит материал, дополняющий выводы первой статьи. В частности, были проведены данные по реакционной способности фенилхлорформиатов (I), различающихся природой уходящего, в ходе реакции атома галогена.

\[\text{C}_9\text{H}_5\text{O} = \text{O} + \text{X} = \text{Cl}, \text{ Br} \]

Кроме того, изучено влияние температуры и изменения полярных свойств растворителя (переход от бензола к нитробензолу) на скорость рассматриваемых превращений.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Фенилбромформат получали из соответствующего фенилхлорформиата и ацетилбромида. Найдено %: C 84.10; H 5.12; Br 79.86. C_{17}H_{19}BrO_3.