АЛГОРИТМ РАСЧЕТА ТРЕХМЕРНОГО МАГНИТНОГО ПОЛЯ ИНДУКТОРА ЭЛЕКТРОМАГНИТНОГО УСТРОЙСТВА ПРЕССОВАНИЯ ГЕКСАГОНАЛЬНЫХ ФЕРРИТОВ

Эсауленко В.А., Никорюк Н.С.
Донецкий национальный технический университет

The algorithm and programme of calculation of three-dimensional magnetic field of three-leg structure electromagnetic apparatus of compaction of the ferrites has been developed. The algorithm is based on application of the secondary source method. It is proved influence of magnetic permeability of the material and parameter of digitization of medium surface on the accuracy of calculation.

В ДонНТУ разработана методика численного расчета двухмерного магнитного поля индуктора с кольцевым трехлучевым магнитопроводом и источником магнитного поля в виде трех прямоугольных катушек, расположенных на лучах магнитопровода [1,2]. Поскольку размеры магнитопровода сопоставимы с областью задания источников поля, то рассматриваемое магнитное поле является трехмерным.

Целью данного исследования является разработка алгоритма численного расчета линейного (магнитная система — ненасыщенная) трехмерного магнитного поля индуктора с трехлучевым магнитопроводом (рис. 1).

При расчете магнитного поля в кусочно-непрерывной среде возможны следующие основные подходы: использование методов конечных разностей, конечных элементов и вторичных источников [3,4]. Для анализа магнитного поля рассматриваемого устройства наиболее приемлемым является метод вторичных источников, так как он не требует искусственного ограничения расчетной области при рассмотрении краевой задачи в неограниченной среде, не имеет дополнительных погрешностей при аппроксимации границ сложной формы и может быть реализован при трехмерной постановке краевой задачи.

В этом методе неограниченная среда сводится к однородной путем замены ферромагнитных тел вторичными источниками, эквивалентными ферромагнетикам в воздействии на первичное магнитное поле катушек. Вторичные источники, вводимые для замены алюминия непрерывной среды, характеризуются скалярными или векторными величинами, при этом одному уравнению, содержащему векторную неизвестную величину, равносильно двум или трём уравнениям, содержащим скалярные величины.

При выборе исходной функции предпочтение при трехмерной постановке задачи следует отдать скалярным источникам. Будем считать, что магнитная проницаемость μ ферромагнитных деталей магнитопровода не зависит от интенсивности магнитного поля. Для описания магнитного поля в рассматриваемую расчетную модель введем вторичные скалярные источники — фиктивные магнитные заряды с поверхностной плотностью σ. Исходные переменные размещаются не во всей расчетной области, а только на границах раздела с различными свойствами, где относительная магнитная проницаемость μ изменяется скачком.

Прием следующие обозначения (рис.1): Θ̃ — точка, в которой рассчитывается плотность вторичных источников σ; M и N — точки расположения источников.
(точки θ и M могут совпадать, если плотность вторичных источников определяется непосредственно в точке M); \overrightarrow{r_M} (r_{MN}) — вектор, направленный от θ к M (N), длина которого равна расстоянию между этими точками; \overrightarrow{\delta(N)} — единичный вектор, нормальный к поверхности S ферромагнитного тела в точке θ; V_k — объем проводников \overrightarrow{V_k} с током; \overrightarrow{\delta(N)} — вектор плотности тока элементарного объема ds в точке N, принадлежащей объему V_k.

Для определения плотности вторичных источников – фиктивных магнитных зарядов используем интегральное уравнение Фредгофьма II рода [4, 5]

$$\sigma(\theta) + \frac{\lambda}{2\pi} \int_{\delta(S)} \frac{\cos(\overrightarrow{r_{MN}} \cdot \overrightarrow{\delta(N)})}{r_{MN}^2} + \frac{2\pi}{s^*} \int_{\delta(N)} ds = f(\theta),$$

где \(f(\theta) = -\lambda \overrightarrow{\delta(N)} \cdot \overrightarrow{\delta(S)} \cdot \frac{\sigma(S)}{r_{SN}} dV_N,

$$\lambda = \frac{\mu_L - \mu_0}{\mu_L + \mu_0}, \mu_L - относительная магнитная проницаемость ферромагнитного тела, \mu_0 - относительная магнитная проницаемость окружающего пространства, S_0 - площадь поверхности ферромагнитного тела.

Напряженность эквивалентного магнитного поля равна

$$\overrightarrow{H}(\theta) = \frac{1}{4\pi} \int_{\delta(S)} \frac{\overrightarrow{r_{MN}} \cdot \overrightarrow{\delta(N)}}{r_{MN}^2} dV_N - \frac{1}{4\pi\mu_0} \int_{\delta(S)} \sigma(S) \frac{\overrightarrow{r_{MN}}}{r_{MN}^3} ds_M.$$

В правой части уравнения (1) функция \(f(\theta)\) определяется своим источником и перед началом расчетов неизвестна. Непосредственно аналитическое интегрирование соотношения (2) в данном случае не представляется возможным, из-за чего возникает необходимость использования методов численного интегрирования. Представим функцию \(f(\theta)\) в виде \(f(\theta) = 2\mu_L \cdot \lambda \cdot \overrightarrow{H}_n(\theta),\) где \(\overrightarrow{H}_n(\theta)\) — нормальная составляющая напряженности магнитного поля, создаваемая токами намагниченных катушек (рис.2).

Для расчета \(\overrightarrow{H}_n(\theta)\) будем использовать метод сведения вихревого поля токов к потенциальной подъ магнитных зарядов [6]. Идея метода состоит в замене каждой намагниченной катушки эквивалентной системой магнитных зарядов противоположного знака, лежащих на её торах. Искомое поле \(\overrightarrow{H}_n\), создаваемое токами катушки, можно представить в виде суммы двух полей: расчетного \(\overrightarrow{H}_n\), определяемого магнитными зарядами, и дополнительного поля \(\overrightarrow{H}_0 = \overrightarrow{H}_p + \overrightarrow{H}_3\).

Напряженность \(\overrightarrow{H}_0\) отлична от нуля только в части пространства, ограниченной поверхностями \(S_1\) и \(S_2\) и боковыми поверхностями катушки, она имеет только одну проекцию – \(H_y\). Распределение функции \(H_y\) и магнитных зарядов \(\overrightarrow{a}_M\), эквивалентирующих магнитное поле \(H_y\), прямоугольной катушки, представлено на рис.3.

Напряженность магнитного поля \(\overrightarrow{H}_p\), обусловленного эквивалент-
nymы магнитными зарядами, определяется интегралом
\[\mathbf{H}_p = \frac{1}{4\pi\mu_0} \int \frac{\mathbf{M}}{r^3} \, dS_M \]
и также требует численного интегрирования.

Поверхности \(S_1 \) и \(S_2 \) разбъем на элементарные площадки, как это показано на рис. 4. Общее число элементарных площадок равно \(N \). В пределах каждой площадки будем считать, что поверхностная плотность магнитных зарядов постоянна и равна плотности в её средней части. Для \(k \)-й площадки будем иметь \(\sigma_M^{(k)} = \pm \mu_0 \delta \cdot (k - 0.5) \Delta l \), где \(k = 1 \cdots N - 1 \) - номер элементарной площадки, \(\delta \) - плотность тока в намагниченных катушках. Знак "+" имеет магнитные заряды площадок на поверхности \(S_1 \), знак "-" на поверхности \(S_2 \). Последняя \(N \) - на площадка принята равной площади отверстия в прямоугольной катушке. Тогда для составляющих напряженности магнитного поля получим:

\[H_{px} = \frac{\delta \cdot \Delta l}{4\pi} \sum_{i=1}^{N} (-1)^i \left(\frac{1}{2} I_{1,1} + I_{2,1} + \cdots + I_{N-1,1} + \frac{1}{2} I_{N,N} \right) \]

\[H_{py} = \frac{\delta \cdot \Delta l}{4\pi} \sum_{i=1}^{N} (-1)^i \left(\frac{1}{2} I_{1,2} + I_{2,2} + \cdots + I_{N-1,2} + \frac{1}{2} I_{N,N} \right) \]

Рисунок 4 – Апроксимация поверхностей \(S_1 \) и \(S_2 \) катушек элементарными площадками

Здесь \(i = 1 \) для поверхности \(S_2 \), \(a = 2 \) для поверхности \(S_1 \), а аналитические выражения первообразных для рассматриваемых подинтегральных функции равны:

\[F_x = -\ln(r_x + r) \]
\[F_y = \arctg \frac{r_y}{r_x} \]
\[F_z = -\ln(r_z + r) \]

Трехлучевой индуктор содержит три намагниченные катушки. Расчет магнитного поля одной из катушек выполняем в исходной системе координат XYZO. Для расчета полей второй и третьей катушек выводим системы координат \(X'Y'Z'O \) и \(X''Y''Z''O \), полученные при повороте исходной системы координат XYZO вокруг оси \(OZ \) на угол соответственно равный \(+120^\circ \) и \(-120^\circ \). В результате такого поворота точка наблюдения \(\theta \) имеет координаты:

в системе координат \(X'Y'Z'O \):

\[X'\theta = -0.5 \cdot X_\theta + 0.866 \cdot Y_\theta ; \quad Y'\theta = -0.866 \cdot X_\theta - 0.5 \cdot Y_\theta \]

в системе координат \(X''Y''Z''O \):

\[X''\theta = -0.5 \cdot X_\theta - 0.866 \cdot Y_\theta ; \quad Y''\theta = -0.866 \cdot X_\theta - 0.5 \cdot Y_\theta \]

Составляющие напряженности магнитного поля \(H'_x, H'_y, H'_z \) затем пересчитываются в исходную систему координат: для катушки 2 \(H'_x = -0.5 \cdot H_x - 0.866 \cdot H_y, \quad H'_y = 0.866 \cdot H_x - 0.5 \cdot H_y \);

для катушки 3 \(H'_x = -0.5 \cdot H_x + 0.866 \cdot H_y, \quad H'_y = -0.866 \cdot H_x - 0.5 \cdot H_y \).

Наиболее важным моментом задачи расчета магнитного поля методом вторичных источников является отыскание решения интегрального уравнения (1), сформулированного относительно неизвестных величин вторичных источников. Один из наиболее распространённых приближенных методов решения линейных интегральных уравнений состоит в замене интегрального уравнения конечной системой линейных алгебраических уравнений. Основная идея этого метода заключается в кусочно-постоянной аппроксимации плотности заряда \(\sigma \) по элементарным площадкам, составляющим поверхность \(S \), и последовательном помещении точки \(\theta \) в средние точки всех выделенных площадок.

Применительно к рассматриваемой задаче поверхность \(S \) ферромагнитного индуктора разбивается на \(4N \) элементарных площадок \(\Delta S_j \) с центрами в точках \(M_j (j = 1, 2 \ldots, 4N) \). Тогда, заменив поверхностный интеграл суммой интегралов на участках \(\Delta S_j \), уравнение (1) можно записать в виде

\[\sigma(\theta) = \frac{\lambda}{2\pi} \sum_{j=1}^{4N} \sigma(M_j) \cdot G(\theta, M_j) = f(\theta), \]

(4)

Наукові праці ДонНТУ – Електroteхніка і енергетика – 2006 – випуск 112

42
где $G(\theta, M_j) = \int K(\theta, M_j) \cdot dS_j$.

(5)

Ядро интегрального уравнения $K(\theta, M_j)$ определяется соотношением $K(\theta, M_j) = \frac{\cos(r_{\theta M_j} \cdot \vec{r}_{\theta})}{r_{\theta M_j}^2} + \frac{2\pi}{S_e}$.

Анализ примитивной расчетной модели свидетельствует о том, что распределение вторичных источников σ обладает симметрией относительно плоскостей FOZ и YOX, позволяя отыскать искомую величину на четверти поверхности S. Учитывая равенство поверхностной плотности магнитного заряда в симметрично расположенных относительно указанных плоскостей точках M_{j1}, M_{j2}, M_{j3}, M_{j4} и записав равенство (4) для точек центров элементарных площадок ΔS_j, получим систему алгебраических уравнений вида

$$\sigma(\theta_i) - \frac{2}{2\pi} \sum_{j=1}^{N} \sigma(M_j) \sum_{k \neq j} G_{j,k} = f(\theta_i),$$

где $i=1, 2, \ldots, N$ и функция $G_{j,k}$ определяется согласно (5).

Систему уравнений (6) можно записать в векторно-матричной форме $AG = F$,

(6 a)

где G и $F = N$ — матрицы-столбцы соответственно исчлененных переменных и правых частей, а A — квадратная матрица коэффициентов размерностью $N \times N$, коэффициенты которой задаются соотношением

$$a_{ij} = \frac{\lambda}{2\pi} \sum_{k=1}^{N} \int \frac{\cos(r_{\theta M_j} \cdot \vec{r}_{\theta})}{r_{\theta M_j}^2} + \frac{2\pi}{S_e} |dS_i - j|, \quad a_{i,i} = \frac{\lambda}{2\pi} \sum_{k=1}^{N} \int \frac{\cos(r_{\theta M_j} \cdot \vec{r}_{\theta})}{r_{\theta M_j}^2} + \frac{2\pi}{S_e} |dS_i - j|.$$

(7)

Для перехода от интегральной трактовки задачи к численному анализу матричного уравнения необходимо сформировать матрицы A и F для выбранной расчетной модели.

Расчет элементов матрицы A фактически сводится к отысканию функций $G(\theta, M_j)$, при этом процесс вычисления интегралов (5) определяется взаимным расположением точек θ и M на поверхности S. Если заменить распределенный заряд σ по площади ΔS_j сосредоточенным в центральной точке M_j площадки, то грешность расчета $\varepsilon \leq 1\%$ при $r_{\theta M_j} \geq 8R$ (R — радиус выделенной площадки). В этом случае при расчете диагональных коэффициентов a_{ii} ($i \neq j$) соотношение (5) заменяется его приближением $G(\theta, M_j) \approx K(\theta, M_j) \cdot c_{\theta} \cdot \Delta S_j$.

Расчет интеграла $\int K(\theta, M_j) \cdot dS$ для значений $r_{\theta M_j} \leq 8R$ может быть выполнен численно с использованием кубатурных формул, позволяющих находить приближенное значение подинтегральной функции в конечном числе точек P_1, P_2, \ldots, P_N в ΔS_j [5]. Совокупность точек P_1, P_2, \ldots, P_N называют сеткой узлов кубатурной формулы. Целесообразно использовать формулу максимальной точности с минимальным числом узлов. Этим требованиям удовлетворяет кубатурная формула с двумя ординатами соответственно на отрезках ab и cd выделенной прямоугольной площадки ΔS (отрезок ab параллелен оси x, а cd — оси y),

$$G(\theta, M_j) \approx \frac{\Delta S_j}{A} \left[K(\theta, P_1) + K(\theta, P_2) + K(\theta, P_3) + K(\theta, P_4) \right],$$

(8)

где $P_1(x_0, y_0), P_2(x_0, y_1), P_3(x, y_0), P_4(x, y_1)$ — сетка узлов кубатурной формулы (8), a

$$x_0 = \frac{a + b}{2}, \quad x = \frac{c + d}{2}, \quad y_1 = \frac{d + c}{2}, \quad y = \frac{d + c}{2}.$$

Приведенный алгоритм целесообразно применять при отыскании диагональных коэффициентов a_{ii} ($i \neq j$), поскольку в этом случае точки θ и M_j совпадают и выражение (7) становится неопределенным. В подобной ситуации предлагается иной способ определения функции $G(\theta, M_j)$, заключающийся в аналитическом интегрировании соотношения (5), что возможно, когда поверхность элемента аппроксимируется поверхностью второго порядка, например цилиндрической или сферической.

Для рассматриваемой задачи характерны следующие четыре случая расположения точек θ_i на поверхности S ферромагнитного индуктора: 1) точка θ_1 расположается на плоской поверхности (торцевая поверхность кольцевого магнитопровода или поверхность полюсов); 2) точка θ_2 расположена на цилиндрической поверхности кольцевого магнитопровода или полюсов; 3) точка θ_3 расположена в углах точек полюсов магнито-
провода; 4) точка θ_t располагается на ребрах магнитопровода. В первом случае для плоской элементарной площадки ΔS_t, $\cos(\theta_{tM}, \vec{n}_0) = 0$ при любом значении $R_{\theta t M}$, когда точка M_t располагается внутри элемента, и поэтому $G(\theta_t, M_t) = \frac{2\pi}{R_{\theta_t M}} \Delta S_t$. Во втором случае на поверхность S наносятся два семейства взаимно ортогональных линий, образующих граничные прямугольники со сторонами в видах пути $R\Delta \phi$ и отрезка Δz (рис.5) и интегрирование соотношения (5) позволяет получить выражение для $G(\theta_t, M_t)$:

$$G(\theta_t, M_t) = -\frac{2\pi}{R} \int \frac{R\Delta \phi}{\Delta z} + \sqrt{1 + \left(\frac{R\Delta \phi}{\Delta z}\right)^2} + \frac{2\pi}{S_t} \Delta S_t. \tag{9}$$

Поверхность элемента ΔS_t в третьем случае будем аппроксимировать поверхностью сферического сегмента, выражение $G(\theta_t, M_t)$ для которого имеет вид (Θ - центральный угол сферического сегмента): $G(\theta_t, M_t) = -\frac{2\pi}{2} \sin \frac{\Theta}{S_t} + \frac{2\pi}{S_t} \Delta S_t.$

Для расположенных на ребрах магнитопровода точек θ_t целесообразно аппроксимировать элементы ΔS_t цилиндрической поверхностью и для расчета диагональных коэффициентов a_{ki} использовать соотношение (9).

Отыскание коэффициентов a_{ki} связано с выбором способа разбиения поверхности S на элементарные площадки. При этом целесообразно аппроксимировать поверхность ферромагнитного тела элементами ΔS_t, имеющими наиболее простую при заданной геометрии объекта конфигурацию. Дискретизация магнитной системы на элементарные площадки представляет первый шаг на пути численного решения задач, который не имеет строго теоретического обоснования. Неудачная дискретизация ведет к получению грубого приближения к искомому решению [7, 8]. Окончательный выбор характера дискретизации может быть произведен только после выполнения решения с помощью численного эксперимента с изменением шага дискретизации или по сопоставлению результатов расчета с экспериментальными данными.

Для уменьшения объема вводимой числовой информации целесообразно учсть симметрию магнитной системы, а также симметрию распределения плотности вторичных источников σ, что позволяет ограничить данными об одной четверти поверхности магнитопровода, заключенной между плоскостями YOZ и XOY. Координаты симметричных относительно указанных выше плоскостей точек $M_{j,k}$ будут следующими:

$$M_1(x_1, y_1, z_1), \quad M_2(x_2, y_2, z_2), \quad M_3(x_3, y_3, z_3), \quad M_4(x_4, y_4, z_4).$$

В работе принят следующий способ дискретизации. На основании кольцевого магнитопровода участки ΔS_t были образованы взаимно ортогональными семействами линий — прямыми $\varphi_k = \text{const}$ и окружностями $r_m = \text{const}$ (рис.6). Для координат центров элементарных площадок, принадлежащих торцевым поверхностям кольцевого магнитопровода, с учетом обозначений, принятых на рис.б и рис.1, можно записать:

$$x_{mk} = r_{mk} \cdot \cos \varphi_k, \quad y_{mk} = r_{mk} \cdot \sin \varphi_k, \quad z_{mk} = \frac{H}{2}, \quad \text{где} \quad r_{mk}, \varphi_k \text{ задаются в виде}$$

$$r_{mk} = \sqrt{(r_m^2 - r_m^2 - 1)/2}, \quad \varphi_k = \Delta \varphi / 2 + \Delta \varphi \cdot (k - 1) + \varphi_h, \quad \text{а} \quad m = 1, 2, \ldots, n_r, \quad k = 1, 2, \ldots, n_k, \quad \varphi_h = \frac{\pi}{2}. \tag{10}$$

Координаты узлов кубатурной формулы (8) определяются соотношениями:

$$x_0 = r_0 \cdot \cos \varphi_0, \quad y_0 = r_0 \cdot \sin \varphi_0, \quad z_0 = h_k / 2, \quad x_1 = \eta_1 \cdot \cos \varphi_1, \quad y_1 = \eta_1 \cdot \sin \varphi_1, \quad z_1 = h_k / 2,$$

где $r_0 = r_{mk} - \frac{r_m^2 - r_m^2 - 1}{2}, \quad \eta_1 = r_{mk} + r_m - r_m - 1, \quad \varphi_k = \varphi_k - \frac{\Delta \varphi}{2}, \quad \varphi_1 = \varphi_k + \frac{\Delta \varphi}{2}. \tag{11}$

Площадь элементарных участков ΔS_t определяется равенством...
Величины проекций нормалей \(\vec{n}_i \) на оси декартовой системы координат задаются соотношениями:

\[
\begin{align*}
\Delta S_1 &= \Delta \phi \cdot \frac{(r_m^2 - r_n^2)}{2} \\
\end{align*}
\]

Для расположенных на цилиндрических поверхностях магнитопровода точек наблюдения \(\theta_i \) элементы \(\Delta S_2 \) представляют собой криволинейные прямоугольники со сторонами в виде дуги \(RA_2 \) и отрезка \(\Delta r_i \), причем при произвольном разбиении цилиндрических поверхностей по высоте на \(n_z \) частей для каждой цилиндрической поверхности радиуса \(R \) должно выполняться равенство \(h_k / 2 = \sum_1^n \Delta r_i \).

Координаты центров площадок \(\Delta S_2 \) определяются соотношениями

\[
\begin{align*}
\Delta x_k &= R \cdot \sin \phi_k \cdot \Delta \psi_k \cdot \Delta r_i \\
\Delta y_k &= R \cdot \cos \phi_k \cdot \Delta \psi_k \cdot \Delta r_i \\
\Delta z_k &= \frac{\Delta \psi_k}{2} + (m - 1) \cdot \Delta z \cdot \Delta \psi_k \\
\end{align*}
\]

где \(m = 1,2, \ldots, n_z \); \(k = 1,2, \ldots, n_r \); \(n_p \) - число разбиений на равные дуги цилиндрической поверхности, \(\phi_k \) - рассчитывается согласно (10), а \(\Delta \psi_k = \frac{\phi_{k+1} - \phi_{k}}{n_r} \cdot \Delta \varphi \), \(\Delta z = h_k / 2 \cdot n_z \cdot \Delta \psi_k \), где \(\phi_{k+1} \) и \(\phi_k \) - угловые координаты, определяющие начальное и конечное положения цилиндрических поверхностей, \(h_k \) - высота цилиндрической поверхности магнитопровода.

Координаты узлов кубатурной формулы (9) для цилиндрических поверхностей определяются согласно выражениям

\[
\begin{align*}
x_{0,k} &= R \cdot \cos \phi_k \cdot 0, \quad y_{0,k} &= R \cdot \sin \phi_k \cdot 0, \quad z_{0,k} = z_k - \frac{\Delta \psi_k}{2} \\
\end{align*}
\]

где \(\phi_k \) и \(\phi_{k+1} \) рассчитываются согласно (11).

Площадь этих элементарных участков

\[
\Delta S_2 = R \cdot \Delta \varphi \cdot \Delta z.
\]

Просекции нормалей \(\vec{n}_i \) на ось декартовой системы координат

\[
\begin{align*}
x_i = \pm x_{0,k} / R, \quad y_i = \pm y_{0,k} / R, \quad z_i = z_{0,k} \cdot m \cdot n_z / \Delta z + \Delta z / 2
\end{align*}
\]

где знак ‘+’ соответствует цилиндрической поверхности радиуса \(R_i \), знак ‘-’ - цилиндрическим поверхностям радиусов \(R_2, R_3 \), а \(R = R_1, R_2, R_3 \).

При выборе способа дискретизации поверхности полосов достаточно разработать алгоритм расчета координат центров элементарных участков и узлов кубатурной формулы (8) только полоса 1, так как эти координаты для поверхности полосов 2, 3 легко определяются при учете симметрии вокруг оси \(OZ \).

Рассмотренный приближенный метод решения интегральных уравнений требует решения систем линейных алгебраических уравнений (6 a), которые могут быть решены как прямыми, так и интерационными методами, а также комбинированными, основанными на их совместном использовании. Матрица коэффициентов \(\mathbf{A} \) рассматриваемой системы уравнений, является полной заполненной и несимметричной. В этом случае наиболее эффективными оказываются прямые методы решения систем линейных алгебраических уравнений. Среди прямых методов одним из наиболее быстродействующих является метод исключения Гаусса, который был использован в этой работе.

Для проверки алгоритма расчета и оценки его трудоёмкости в работе и качестве модели была использована известная задача об алгетическом расчете магнитного поля цилиндрического экрана, находящегося в плоскопараллельном магнитном поле [9]. Сравнение численного эксперимента с аналитическими результатами проводилось с помощью нормальной составляющей индукции \(B_n \) на границе воздуха – ферромагнитик. Эта процедура также осуществлялась при известном законе распределения плотности “вторичных” магнитных зарядов по поверхности ферромагнитного тела. Исходная величина \(B_n \) связана с поверхностной плотностью магнитных зарядов \(\sigma \) соотношением [9]

\[
B_n = \frac{\sigma}{2} \left(1 + \frac{1}{R^2}\right).
\]

Были получены при численном решении значений функции \(\sigma \) на поверхности цилиндрического экрана с квадратовым разрешением в значительной степени определяется как порядком системы алгебраических уравнений, аппроксимирующих исходное интегральное уравнение, так и величиной магнитной проницаемости \(\mu \). Указанные аспекты численной реализации исследуемого алгоритма рассматривались на модели цилиндрического экрана с внутренним и внешним радиусами 0,08 м и 0,1 м и высотой 1 м. При таком соотношении размеров магнитное поле вблизи геометрического центра экрана можно считать двухмерным и величину \(B_n \) определять согласно [9].

В процессе математического моделирования значение параметра \(N \) порядков решаемой системы алгебраических уравнений изменялось от 240 до 576, а величина относительной магнитной проницаемости от 20 до 50.

Наукові праці ДонНТУ – Електротехніка і енергетика – 2006 – випуск 112

45
2000. Тестові чисельні розрахунки показали, що при зміні магнітної проникнівності μ від 20 до 100 і \(N \geq 324 \) погрешність розрахуєння плотності магнітних зарядів на циліндричних поверхнях екрани не перевищує 5 \%, причому меньшими значеннями магнітної проникнівності відповідають менші значення погрешності. Для \(μ = 2600 \) і \(N = 576 \) погрешність становила 23 \%. Для всіх чисельних розрахунках плотності вторинних магнітних зарядів превзяла аналогічні вельичини, отримані аналітичним підходом.

Сравнення численного експерименту з аналітичними результатами вирішення магнітного поля циліндричного екрани дозволяє визначити алгоритм розрахунка, але визначити його швидкість не досягно. В результаті вирішення математичного моделювання магнітного поля екрани знайдені розрахунки в експерименті (рис.1). Значення параметра \(N \) змінювалося від 128 до 405, оскільки при постійному налаштуванні плотностей розрахунки магнітних зарядів відбачені контрастні знання. Для оцінки погрешності розрахунку було проведено порівняння обчислювальних результатів із зразками, які використовувались в експерименті.

Результати обчислень були виконані в рамках експериментів. Тестові чисельні розрахунки показали, що максимальна вельичина перевищення та оцінка результатів моделювання характерна для усього періоду та роботи, і оновлення параметра \(N \) не приводить до зменшення значень параметра \(N \) у середньому для усього періоду результатів чисельного моделювання. На гладких участках графіка зміна в величині параметра \(N \) не впливає на величину параметра \(N \) для усього періоду результатів чисельного моделювання.

Висновки.

1. Розроблено алгоритм розрахунка трьохмірного магнітного поля индуктора у двох середовищах та пресовання ферриту в колоннях трьохлучевого магнітного поля, що використовується в інжиніринговій системі розсабування Фредгольма II ріда.

2. Сравнення численного розрахунка магнітного поля циліндричного екрани з численним розрахунком моделювання магнітного поля екрани показало наявність її аналітичного розрахунка. Результати чисельного розрахунка магнітної проникності \(μ \) від 20 до 100 погрешність розрахунку плотності магнітних зарядів на циліндричних поверхнях екрани не перевищує 5 \% при зміні системи вирішення \(N \geq 324 \).

3. Максимальна вельичина погрешності розрахунку магнітного поля в експериментальній зоні трьохлучевого индуктора при зміні значення параметра \(N \) від 128 до 405 становила 18 \%, а при \(N = 20-5.6 \% \).

Література

Рекомендовано до випуску. А.М. Розановим Г.Г.